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TECHNICAT, NOTE 4085

METHOD OF SPLIT RIGIDITIES AND ITS APPLICATION TO
VARIOUS BUCKLING PROBLEMS

By P. P. Bijlsard
SUMMARY

A comprehensive treatise on the method of split rigidities is pre-
sented. First the principles upon which the method is based are discussed.
It is shown on new exsmples how these principles are spplied. These
applications are divided into problems where all component modes into
which the actual behavior of a composite structure is split have the
same boundexry conditions and into those where these boundexry conditions
differ. Examples of the first type include sandwich columns with various
boundary conditions, columns with batten plates, and latticed columns;
exemples of elastic and plastic buckling of sandwich plates with ortho-
tropic core and of corrugsted-core sandwich plates are also given. This
type includes problems besed on the same principles where only one mode
has to be considered. As an example, the buckling stress of homogeneous
plates under nonhomogeneous stresses in their plane is expressed in terms
of their critical stress under homogeneous compression. To this group
also belongs the determination of the ultimste load of plates under
compression. An explicit formula 1s derived for the buckling stress of
stringer panels which is a new example of the second type of problem.

The problems were chosen so that the correctness of the method, which
is besically an spproximate one, can be shown by comparison with exact
calculaetions or tests.

INTRODUCTION

In severel papers a method has been used for calculating the buckling
gtresses of structures that buckle in composite modes which is called the
"method of split rigidities." The method consists of splitting the
buckling deflection into two or more component modes and expressing the
buckling stress in terms of the critical loads for these component modes.
References 1 to 19 are based partly or completely on this method.

For example, in a sandwich plate (refs. 5, 9, 11, 12, and 14) there
are three different buckling modes: (1) That of the single faces,
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(2) that of the complete sandwich plate, assuming the faces to have zero
flexural rigidity but assuming the core to have infinite shear rigidity,
and (3) that of the complete sandwich plate, assuming the faces to have
zero flexural rigidity and assuming the faces to be infinitely rigid
against extension. In the case of & T-section (ref. 13) the three modes
are: (1) Bending about the Y-axis situated in the plane of the web,

(2) twisting ebout the shear center axis, and (3) plate buckling. In
the case of buckling by general instability of a long cylindrical shell
with stiffening rings under external pressure (ref. 19) the component
modes are buckling as an orthotropic shell, assuming the rigidity of the
rings to be uniformly distributed along the length. of the shell, end
buckling of the shell between the rings. In the case of stringer panels
(ref. 18) practically exsct solutions are obtained by this method for
conventional panel buckling as well as for forced crippling (refs. 16,
18, and 20).

Formulas for buckling loads or stresses have been derived in earlier
papers gnd new ones will be presented herein by establishing equations
between external end internal actions. In references 1, 2, 3, and 6 the
external and internal actions considered were the external and internal
bending moments. In references T and 13 bending as well as torsional
moments were considered. Bending moments in a cross section as well as
deflecting and restraining transverse forces acting on an element were
considered in references 4, 9, 11, 13, and 16. The actions and reactions
considered in references 14, 15, 17, and 19 were the amounts of work done
by deflecting and restraining forces. Columns and plates wilth initisl
deflections were considered in s footnote of reference 1 and in
reference 15.

The method of split rigidities was also applied in the postbuckling
range (refs. 15 and 17). It is very powerful and leads to simple results
in cases where a solution by existing methods is practically impossible.
It was syccessfully used in two other projects (refs. 13 and 17). Until

the present only a few other investigators have used this method (refs. 21,

22, and 23) probably because no general comprehensive treatise on it has
yet been made available.- Therefore the purpose of the present report is
to give such a general explanstion, with examples of the method of eppli-
cation in various special cases.

The present investigation was carried out at Cornell University
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronsutics. The examples dealing with the .
ultimate load of plates under compression and with buckling of stringer
panels are part of earlier work done for the Bell Aircraft Corporation.
The author wishes to express his gppreciation for the valuable coopere-
tion of all concerned and to the Bell Aircraft Corporation for its per-
mission to publish the abovementioned examples.
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SYMBOLS

total cross section of column
plastic reduction coefficients for plastic buckling of plates

cross section of diagonal

cross section of stiffener
cross section of vertical

half wave length of buckling for plate
width of plate; also, width of bay of stringer panel

effective width of plate

constant; also spring constant (foundstion modulus)

center-to~center spacing of batten plates in bullt-up column;
also, free length of single struts in latticed colizm

effective free length of single struts between batten plates

deflecting force

ratios of shesr to shear angle

elastic modulus

elastic modulus of corrugation

elastic modulus of faces (skin) in sandwich plate; also,
secant modulus in section "Ultimate ILoad of Plates Under
Compression”

tangent modulus

tangent modulus of corrugation

modulus of rigidity of sandwich core
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modull of rigidity in X- and Y-directions of sandwich core

total thickness of sandwich column or sandwich plate, + + 2h

center-to-center distance of single struts of bullt-up column;
8lso, thickness. of single face of sandwich column or sandwich
plate '

moment of inertia

moment of 1nertia of single strut of bulilt-up column
moment of inertia of single face of sandwich plete
moment of inertis of reduced built-up columm, AnS/A

moment of inertia of reduced sandwich columm or sandwich
plate, (1/2)n(t + h)2

constant
buckling stress coefficient defined by equation (142)

buckling stress coefficients referring to cases O, 1, and 2,
" respectively

buckling stress coefficient defined by equation (145)
. . coefficients in equation (10k4)

effective length of column
length of column; also, length of stringer panel

effectlive slenderness ratio for reduced case of built-up
column

effectlve slenderness ratio of built-up column

moment

bending moments

torsional moments
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== (eaffer)

N flexural rigldity of homogeneous plate; also, flexural rigidity
of face of sandwich plate

Ng flexural rigidity of reduced sandwich plate, given by
equation (59)

n=1l/c

n' number of bays of stringer panel

P buckling load

Dyq coefficients in equations (108) and (203)

Q shear force; also, transverse shear force in plate

Q! transverse shear force that would cause a unit angular
distortion in latticed column

R restraining force

r radius of gyration of reduced built-up column, h/2;
r=ry=ry if ry=r1rg

ra redius of gyration of single strut of builit-up column

TysTy ratios defined by equations (78) and (81)

fx,fy ratios defined by equations (120) asnd (123)

S spring

S,SII,SIv quarter spring constants for plates

t core thickness of sandwich columm or sandwich plate; also,
thickness of homogeneous plate

un noymal function

v translation of single struts per unit shear force in

batten plates

w deflection
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coordinates
directions
function of y only

angle e _

coefficients defined by equation (A6)

coefficient in equation (102)

factor in equation (35)

aspect ratio of buckle in buckled plate, a/b

anguler distortion; also, ratio defined by equation (221)
elongetion

strain

menbrane strain

value <<1 in equation (228)

reduction factor for plasticity for concentric buckling of
plates

reduction factor for plasticity for finite deflectlion of plates
angle; & =06y =68y if 6y = 6y
ratios defined by equation (73)

ratio defined by equation (226) for stringer panel

ratic defined by equation (95)
Poisson's ratio
slope of column in caese 2 of latticed column

normal stress
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Oe normal stress at edge

O membrane normal stress

gy normal stress in plane parallel to middle plane of sandwich
plate

T coefficient in equations (151) and (15h4)

& x,y) function of x and y

Q ratio defined by equation (211)

¥ defined by equation (212)

Q ratio defined by equetion (225) for stringer panels

Subscripts:

a actusl (fig. 10(b))

b bending

cr critical

e external

eq equivalent

h homogeneous

i internal

m maximum

mid center (middle)

P postbuckling; also, refers to fictitious end deflections as
shown in figure 10(b)

r reduced case

s skin (face) for sdndwich plate; also, secant in section
"Ultimate Load of Plates Under Compression"

st stiffener

u uniform

ult ultimate
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X,y refer to X- and Y-directions, respectively; also, refer to X-
and Y-strips, respectively, for orthotropic sandwich plate

¥s yield stress

0,1,2,...n refer to cases 0, 1, 2, . . . n, respectively
DESCRIPTION OF METHOD

The method of split rigidities as applied to buckling problems may
be described as follows:

(1) Splitting into two or more component cases: The elastic or
elastoplastic behavior of a composite structure is split into two or
more component cases for which the individual buckling stresses can be
easily determined. For example, the deflection w of a sandwich plate
with membrane faces is split into its deflections Wy from bending alone

(case 1) and w, from sheer deformation alone (case 2). It is assumed

that in the composite structure the component buckling deflections Wy

and w, have the same shape as in cases 1 and 2 where they occur alone.
The accuracy of the method will be greater the better this assumption
is fulfilled. If it is exactly fulfilled, which as explained in this
report is only possible if wy and Wo have the same shape, the method
ls exact. - -

(2) External actions and internal resctlions: With the shepes of
the component deflections for the combined case thus determined, it is
always possible to establish eguatlons between the external actions and
the internsl reactions. These actions and reactions mey be the external
and internal moments acting in a cross section, the deflecting and
restraining forces acting upon & small element, or the work done by
deflecting and restraining forces.

(3) External action: If the actual combined case is split into two
or more, say n, component cases with deflections Vis Vo, wz, s e e Wy,

the external action is proportional to the actual buckling load Pop for
the combined case and may be expressed in terms of P, and the indi-
vidual deflections Wy Wy WB, « .o wﬁ' For example, spllitting the.

deflection w of a sandwich column with membrane faces into the deflec-
tion wy from bending and the deflection wo from shear deformation,

the external moment M, for the combined case is equal to Pcr(wl + w2).
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(4) Internal action: As stated under item (1), in the combined
case with a deflection w = Wy + Wo the component deflections wy and

wo are assumed to have the same shapes as in the separate cases 1 and 2

with buckling loads Py and P2. The internal reactions depend only on

the shape of the deflection and not on the magniitude of the compressive
force. Therefore, the internasl resctions in the combined case are equal
to those in case 1 alone since additional deformations (case 2) inerease
the deflections but not the internal reactions. In the same way 1t
follows that the internal reactions are equal to those from case 2. For
example, in & sandwich column with membrane faces, the deflection wo

from shesr deformation increases the deflection beyond Wy from bending,

but it does not increase the internal moment from Wys and vice versa,
as shown extensively in reference 1l.

As will be explained later, the rigidities of the structure against
the partial deflections Wy and w, can be considered to be supplied

by sets of springs S5 and S, with different spring constents Cy
and 02 acting in series to restrain the deflection of a column without

any proper flexural rigidity (fig. 1). Hence it is obvious that the
internal reactlion for the combined case, that is, of the combined springs,
is equal to that of the separate springs B8, or 82.

(5) Problems where component cases are coupled: The statements
under item (4) are true only if the deformations for cases 1 and 2 cen
occur independently without restraining each other, such as the bending
and shear deformation of a sandwich column with membrane faces. If this
is not so, for example, if the faces have their own proper flexural
rigidity, the internal action 1s increased sbove that from case 1 or
case 2 alone. This can be taken into account in several ways. If the
coupling ocecurs externally by a third agency, such as in the above example,
this coupling case (case O) can be first ignored; that is, the proper
flexural rigidity of the faces is assumed to be mero. Finally the axisl
restraint offered by this coupling rigldity is added to the buckling load
of the remaining system. This was done, for example, in reference 1ll.

If ceses 1 and 2 themselves are coupled, that is, if they are coupled
internally (so that a deformation from case 2 adds to the internal
reaction from case 1 and vice versa) as occurs, for exsmple, in refer-
ence 15, the extra restraeint offered by case 2 is simply added to the
internal action from case 1 and vice versa. Also e combination of these
methods can be used.

(6) Expression of internal actione and hence of buckling load in
terms of buckling loads for component cases: The internal action for
case 1 due to a deflectlon wy is equal to the externel action for that

case, if it occurs seperately, which is proportional to the buckling
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load Pl for that case anﬁ can be expressed 1n terms of Pl and Wy .

For example, for case 1 of the sandwich column considered in the section
"Introduction," the internal moment M;; from case 1 is equal to the

externsl moment Piwy. According to item (4) this is also the internsl
moment M; for the combined case. Hence from item (3) the equation of

externel and internal moment for the combined case leads to the equa~-

tion Pcr(wi + wz) = Pywy. Simllarly, the internal moment for the com-

bined case ig equal to that for case 2, which is again equal to the
external moment for that case, giving M; = PEWé- Equating thls internal

moment to the external moment gives Pcr(wl + wz) = Powp. Elimination

of Wy and w, glves P,. in terms of Pl and PE' If the component

cases are coupled and the latter method under item (5) 1s used, as will
usually be done in problems where cases 1l and 2 have different boundary
conditions, the internal action willl contaln both partial deflections L

and Wye Further, in such prioblems the external action is usually

expressed as Pchwl + ¢w2) or Pcr(wé + 7Wi) vhere @ and 7 differ
from 1, so that after elimination of Wy and W, & more complicated
formule for P,. in terms of Pl and P2 results than for problems
where cases 1 and 2 have the same boundery conditions.

If splitting into three different ceses is necessary the same method
is used, equating the external actions to the internal reactions due to
cases 1, 2, and 3, respectively. This leads to three homogeneous linear
equetions in LETIPY and ws. Only when cases 1, 2, and 3 have the

same boundary conditlons and are not coupled or are coupled by a fourth
restraint that can be split off, as mentioned in the first case in
item (5), does this lead to simple formulas for P,. &as expressed in

terms of Pl’ P2, and PB; such as those for composite columms coupled
by elastic couplings with equal spacings (ref. 6). In other problems
this method leads to a cubic equation for the buckling load P,.. How-

ever, by combining the first two ceses end then combining them with the
third case (in ref. 13 such a case is presented, namely, the buckling

of columns wilth T-sections), rather simple end formulas could be obtained
containing sguare roots only.

(7) Accuracy of method: The method leads to exact results when the

deflections w,, have the same shape, but sufficiently accurate results

can be obtained 1f they differ in shape, as will be shown in this report.

As shown in reference 1lt, if wy, Wps « « .« w, differ in shape,
the method remsins exact if Pl’ P2, « ¢« « P, are considered as the
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buckling loads belonging to the shapes of Lo and w, in ‘the component

cases, as they occur in the combined case. Since, in general, these
are not the optimum shapes that lead to the minimum buckling loads Py

end P, as they occur in separate cases 1 and 2, by considering Pl
and P2 as ‘the minimum buckling loads conservative results will be

obteined. However, if the structure is externally redundant, such as

in the case of sandwich pletes, there is another influence that may tend
1Yo meke the method unconservetive. This is the fact that in the composite
case the boundary and contlinuity conditions have to be satisfied by the
total deflection w only and not by the component deflectlons

Wy Wos o o o Wy, separetely. This causes a relaxation of restralnts

that tends to make Pl and P2 smaller for the composite case than for

the separate cases and thus to make the result unconservative. Hence in
such a case the method may slightly overestimate the buckling load Pcr

for the combined case.

(8) Problems where buckling deflection in one individual case is
arbitrary: Let the case in which the buckling deflection is arbitrary
be case 2. Then in the composite case the deflection wpo for that case

will have the same shepe es W for case 1. This may be understood as
follows: If during the deformation for case 2 the shape of Wy and

hence the internal reaction for case 1 does not change, the internal
reaction for the combined case will also be determined by the shape of
Wy (from items (4) and (6)). Hence, in order to mske the externsl

action equal the internsl one at each point, the total deflec-
tion Wy + Wos and therefore Wos mist slso have the same shape as Wq .

In some cases, such as that of a sandwich column with asymmetric boundary
conditions which will be considered in this report, the shepe of Wy for

the combined case will differ from that for the individual case 1. How-
ever, also then, in order to obtain equal external and internal moments, in
the combined case Wo will have the same shape as Wy, but the shapes of

Wy and Wo will differ from that of Wy in the separate case 1. Exact
results can be obtained by calculating Pl and P2 for the buckling
deflections as they occur in the composite case.

(9) Columns or plates with initial deflections: The method msy also
be applied to columns or plates with initial deflections. Here one of
the cases is the initial deflection with an individual buckling load
equal to zero (refs. 1 and 15).

(10) Reduction to case of columns or plates on elastic foundetion:
In several problems it is convenient to reduce the restraint offered in

ERTL

Sy
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the component casges to that given by an equivalent elastic foundation.
The structure then can be considered to be wlthout any flexural or
shearing rigidity but to be laterally supported by springs arranged in
series with as many component springs as the number of cases into which .
its behavior is split. For example, if there are two cases, the springs
consist of individual springs 87 and S, (fig. 1).

PROBLEMS WHERE ALL COMPONENT CASES HAVE SAME BOUNDARY CONDITIONS

General Formulas

If all component cases have the same boundary conditions the
resulting formulas expressing the critical lcad in terms of the critical
loads of the separate cases usually acquires the genersl form

I R R | -1 -
PCI‘=PO+PI'=PO+(P1 +P2 +P5 +co.) (l)

where Pl’ P2, .« o e Pn, are the critical loads of the separate cases
and Py is the critical loed that 1s due to the rigidity from the coupling
cage. For example, for a sandwich plate PO is the critical lcad from

the proper flexursl rigidity of the faces alone. Of course, this does
not apply if only one mode 1s considered, such as in the case &f homo-
geneous plates under nonhomogeneous stress distribution and that of the
ultimate load of compressed plates, which is dealt with subsequently.

For plates where the rigidities in the X- and Y-directions differ
e great deal, such as corrugated-core sandwich plates, it is possible
and often necessary to allow for ratios w2/wi of the component deflec-~

tlons which differ for the imesginary strips running in the X- and
Y-directions of which the sandwich plate can be thought to .be composed.
This leads to a formula of the form

(2)

Here the subscripts x and y refer to the buckling loads of the plate
due to the rigidity of the X~ and Y-strips, respectively, also teking
account of the influence of the torsional moments acting on those strips.



NACA TN 4085 13

This formula leads to accurate results for orthotropic sandwich plates
and also to more accurate results than equation (l) for isotropic sand-
wich plates with different boundary conditions in the X- and Y-directionms,
such as long plates that are clamped at the unloaded edges.

Discussion snd Derivation of Equetion (1)

Equation (1), where in some cases P, 1s zero, was derived in refer-

ences 3, 4, 6, and 11 for columns as well as for plates by applying
items (1) to (6) and (8). In the case of columns the actions and reac-
tions considered were the external and internal moments, and in the case
of plates the transverse deflecting and restreining forces acting upon
an element were compared. As stated in reference 11, this formuile leads

to accurate results if Wis Wpy o o @ W, and w have the same shape.

However, even if Wi Wos o e e W, and w are of different shapes

sufficiently accurate results are obtained. In reference 14 the ssme
formile was derived for the case in which Wy and Wy are different in

shape by comparing the work done by deflecting and restraining forces.
It was found that equation (1) is exact if in the combined case Wy
and Wy have the seme shape as they have in the component eases 1 and 2.

But this is obviously so only if, in both the component and the combined
cases, Wqs; Wps and w all have the same shape, since then, from

jtems (3), (4), and (6), in the combined case the distribution of the
deflecting and restreining forces will be similsr. That is, if in the
combined cease the restraining forces from case 1 are given by le]mtb(x,y) s

where &(x,y) 1s a definite function of x and y, for case 2 they will
be Pzwmo(x,y) vhile the total deflecting forces will be P, .w,®(x,¥).

Here x and y are the coordinastes in the plane of the plate, Yim
and Vo 8re the maximum deflections from cases 1 and 2, and Vi = Yom + Wom
is the totel deflection.

Perhaps a better insight into the physical meaning of the method of
split rigidities may be obtained by deriving equation (1) by using
item (10). Consider a long rectangular sandwich plate compressed in
the X-direction with arbitrary boundary conditions at the loaded and
unloaded edges (fig. 2). According to item (1) the buckling deflection w
is split into case 1, from bending, with deflections Wy and case 2,

from shear deformation, with deflections Woe However, as shown in the
longitudinel section in figure 3, the shear deflection cannot occur
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without bending of the faces (the bending rigidity of the core is
neglected). This means that in the combined structure case 2 cannot
occur without inducing a partial deformation according to case 1; in
other words, cases 1 and 2 are coupled. According to item (5) one way
to deal with this situation is to split off the coupling action. This
means that in cases 1 and 2 the faces are assumed to have no proper
flexural rigidity. Since, however, the buckling deflection of the two
single faces requires a load equal to thelr proper buckling load Po,

from item (6) their deflection in the combined case will generate an
extra load Py on the plate. Hence, this load Py has to be added to

that from the combined cases 1 and 2. The combinatlion of cases 1 and 2
is denoted as the reduced case. Thils procedure 1s exact if the buckling
deflection of the single faces (case 0) is similar to the total buckling
deflection w in the combined case. -

In case 1 (deformstion by bending only) the deflecting force acting
on a small element H dx dy, where H 1is the total plate thickness

(fig. 3), is
2
Dy = =P
1 lax2

where Pl is the buckling load per unit width for case 1, neglecting

the proper flexural rigidity of the faces. Hence from item (6) the
restraining force is

ax dy (3)

a Wy

—-Plaxz ax dy (k)

If the plate was supported by an elastlic foundation with & foundabtion
modulus Cy ‘the transverse restraining force acting upon an ele-

rent H dx dy would be Clwl dx dy. Hence the restraint offered by the
Plate in case 1 is equivalent to that of an elastlc foundation with a
foundation modulus (spring constant)

8 Wy

C, =-P
1 152, dx2

L) (5)

In general, this spring constant mey be a function of x and y.
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Similarly, the equivalent spring constant for the restraint offered
by the plate in case 2 (shear deformation of the core only) is

3%
= 1

where P, 1is the buckling load per unit width for case 2. Hence, if
with the actual buckling deflection w +the partial deflections Wy

and W, have the same shape as in the individual cases 1 and 2, the

reduced plate (without proper flexural rigidity of the faces) offers a
restraint against buckling that is equivalent to the lateral restraint
from two spring systems built in series with spring constants Cy

and C, (fig. ¥(a)). Therefore, a unit latersl load per unit surface
causes a deflection

=L 4 L1 -1
w + e (7)

G Co

so that the equivalent spring constant for the reduced plate is

c.C -1
_ ive -1 -i)
Cp = I (cl + Cy (8)

The equivalent spring constant for case O (the single faces), with total
buckling load PO, is in the same way

2
o Y

Hence, if the actual buckling deflection w has the seme shape as Wo

(for case O alone), the equivalent spring constent for the actual plate
is

c,C -1
_ 12 -1 -1
0 + Cl‘ = CO+C_lTC—2_ CO+ (Cl + 02 ) (10)

that is, the spring in figure ¥(b), with epring constant C, 1s equivalent
to the spring system in figure i(a).
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A plate with a spring constant C will buckle if for any element

2
the deflecting force -P g;% is equal to the restraining force Cw, s0
that the buckling load is
P =--Cw§-—2“' (11)
cr sz

or, from equations (5), (6), (9), (10), and (11},

w azwo / sz . P1P5 (Bawl / Bxg) (52W2 / axz) / (wlwz)

Pe, = i Po g [Pl<32W ax2>/w1] + [Pg <62w2/6x2) /wz}

2 2
) wb/ax W, PP,
32w /3x® 0 2ufox® Va2 Pula? 1
F12 2w TT2 3 2
d wz/ax v _§ wi/ax v

(12)

= PO

With the aforementioned assumption that w = wy, the first term to the
right becomes Pn. The spring forces in the springs with constants Cy
and C2 -bullt in series are T :

CIWi = 02W2 N (13)

so that from equations (5) and (6)

2 2 -
3 Wl/ax = P2 (l’-l-)
) wz/ax: FI: S

Further,

LV, (15)
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Using equations (14) and (15), in equation (12) the denominstor of the

second term to the right becomes
2 2 w 2 2 W P W
P———BW/ax 24P —Z—awax Top i 24+1)2+P, (1422
1 2 1\p, w2 P,/ w
W, + W

Fuyfa ¥ T B fak Y
2 1

(Pa + Pl) e

=P + Py (16)
Hence equation (12) trensforms to
P P
_ 1r2
Pop = Pg + P+ Tp (17)

which is identical to equetion (1) with P3 and so forth equal to zero.

The more general equation (1) can be derived in the same way. Hence
equation (1) is exact if wy; and w, differ in shape, but if in the

composite caese wn =W, W, and w, have the same shape as in the
C 0 1 2

separate cases 0, 1, and 2, respectively. This confirms the derivation
in reference 1. However, as stated previously, this condition can be
met only if W Wls and wp have the same shape. In the latter case

equation (1) is exact within the limitations of the usual assumptions,
such as neglect of the deformations from transverse shear in the faces
and from normal stresses o, in planes parallel to the middle plane of

the sandwich plate.

Sandwich Columns With Various Boundary Conditions

Calculetions of buckling loads of sandwich plates with several
boundary conditions were given in references 11, 12, snd 14. In sand-
wich columns or wide plates compressed in the short direction, the author
considered until now only the simply supported case (fig. 5(a)). Here
the deflection W1 for case 1, deformation from bending only, is a half

sine wave. The buckling deflection wp from shear deformstion alone

(case 2) i1s arbitrary. Hence, from item (8), in the combined case Wy
and wp will both have the shape of a half sine wave. The single faces



18 ' NACA TN 4085

(case 0) will also buckle in a half sine wave, so that, from item (6),
in the combined case the internal moment is increased by a sinusoidal
moment Pnw, where Py 1s the buckling load of the faces. By adding a

load Py to the buckling load P. of the reduced case an externsl
moment POW of the same amount is added, so that with a sinusoidal

deflection w equilibrium is malntained in all cross sections. Hence
equation (1) is exact for this case.

In reference 23, the author's method was extrapolated for calcu-
lating the buckling loed of sandwich columns that are clamped at both
ends or at one end (figs. 5(b) and 5(c)). It was found thet for a strut
that 1s clamped at both ends equetion (1) yields exact results, but that
for the simply supported clamped case (fig. 5(c)) equation (1) gives

results that for two examples were unconservative by 5 and 6% percent.

This is understandable from the foregoing discussion. In the
clamped-clamped case (fig. 5(b)) the buckling deflections Wy and wy

for the individuel cases O and 1 are both full sine waves and the sheape
of wp 18 arbltrary. Hence, from item (8) and the above discussion,

in the composite case w, w; and wp will also form full sine waves

8o that from item (1) the present method leads to exsct results. Another
way to see that equation (1) is exact for a clamped-clemped strut is to

observe that the inflection points B and C are (1/4)7 and (3/4)7 from
the left end. The line of action of the compressive force Pcr passes

through these inflection polnts. The center part BC is in exactly the
same condltion as a simply supported strut with length L = (1/2)2 and
the left and right perts AB and CD can be considered as the right and
left parts of such a column, respectively (fig. 5(b)). Since P Pos
Pl’ and P2 in equation (1) also apply to this simply supported column
wlth length L, this equation is also exact for the clamped~clamped
column.

Consider now the clemped simply supported column of Ffigure 5(c).
For case 1 the buckling deflection is part of a sine wave, with the line
of action of the compressive force as the axls. If the external and
internal moments My and M; are expressed in terms of the distance of

the column to that sxis, the equation Mg = My becomes (fig. 6(a))

Pywy = ~EgTd w fax (28)

Thls equation and the boundery conditions are satisfied by
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W) = Wip sin-’i'i(x (19)

where L 1is the effective length ABy of the column (fig. 6(a)). The
same applies %o W for case Q0. BSince for case 2 the deflection Wo

is arbitrary, from item (8) in the composite case it would have the same
shape as w; and w. However, it msy be easily seen that in the com-

posite case Wy has not the same shape as 1n the separaste case 1. It

is well known that in asymmetrically restrained, transversely loaded
spans the distribution of the bending moments is chenged by shear deflec-
tions as, for example, occurs in thin tubes or shells supported &t three
or more points. The effect of clamping a support diminishes. From fig-
ure 6(b), presenting the composite case, it 1s seen that the line of
action AC, of the compressive force embraces an angle o with the original
axis AC of the sandwich column. Hence at the clemped end C the trans-
verse shear and the shear deformation is not zero, so that, although in
case 1 (fig. 6(a)) the slope at C is zero, in the composite case the
slope angle 6 at C is not zero. Now, considering first the reduced
case (Pg = 0), from the same reasoning as given in item (8}, Wis Wo,
and w will have similer shepes with respect to the line of asction of
the compressive force but different shapes with respect to wy 1in case 1.
Hence, from items (1) and (7) and the foregoing discussion, equation (1)
is not exact if Pl and P2 are considered as the buckling loads for
the separate cases 1 and 2. On the other hand it will be exasct if Py

and P2 are the buckling loads for cases 1 and 2 as they occur in the
reduced case of figure 6(b). :

In the same way a8 shown for case 1 in figure 6(a), in figure 6(b)
the deflections wy for case 1 are given by equation (19) » 80 that wo
and w will also vary sinusoldaelly with respect to Tthe line of action
AB02 of the compressive force Pcr‘ Since at C the elastic line of the
strut as shown by the solid curve embraces an angle with its originsl
axis AC, the effective length L for the reduced case (fig. 6(b)) is
greater, with respect to 1, than in the separate case 1 (fig. 6(a)),
where, as is well known, L = 0.7l. Therefore, in the actual case Py
is smaller than it is for case 1 in figure 6(a). Since Py, 1s inde-
pendent of shape or length, it is the same as in the individual case 2,
In reference 23, P; from the separate case 1 (fig. 6(a)) was used in
equation (1), which explains why P,, was found to be higher than the
exact value (Po was assumed to be zero) .

The effective length in figure 6(b) may be found in a similar way,
as was shown on pages TO to 78 of reference 6 for various problems,
using the Hasrman method. The deflections Wys  Wo and w are measured
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from the line of compression ABC,- With the deflection wy at the

clamped edge no rotation can occur with respect to the original axis AC,
so that the tangent Cl'cl is parallel to AC. Hence from figure 6(b)

aw.

. -QE}%)XFI o % (W)x=z (20)

where Wy is given by equation (19) and, since w has the same shape
as was measured from ABCo,

- T ’
W = Wy sin Ix (21)
Insertion of equations (19) and (21) into equation (20) gives

tan 21 =—221 (22)

x
L W, L

From items (3), (), and (6) the equality of external and internal
monents requires -that '

P.w = Pywq = Powp (23)
so that
W. W W P
—lm' = -—l = 1 = 2 (2}.‘.)
Vi W w1 + Wp Pl + P2

Since Pl is equal to the P, for a simply supported strut of length I,
from reference 11 .
rrzE,sIS

- (25)

P

l =
where (fig. 3)

I, = (1/2)h(t + B)2 (26)
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and

2
py = LR g, (27)

where G, 1is the modulus of rigidity of the core. Hence, from equa-

tions (22), (24), and (25), 1L has to be calculated from the following
equation:

7P, 1/ L
tan x = = 2}/ (28)
L x2E T [1\2
e =t § el + P
12 (L) 2
Then P, and P, follow from equaetions (25) and (27) and P., = P, from

equation (1), with Py =0 and PB, -« « P, = 0. With the dimensions

used in an example in reference 23, EgI; = 43,200 kg-cm2, P, = 360 kilo-

grems, and 12 = 800 cm®, equation (28) yields 1/L = 1.276, so that

12 = 1%/i.628 = b9l en®. Hence equation (25) gives P, = 870 kilograms,
so that from equation (1), with Py = 0, Pon = 254 kilograms. This is
in accordance with the result obtained in reference 23 from an exact
calculation, which shows that alsc for columns with asymmetric edge condi-
tions equation (1) is exact if applied to the correct effective length of

the column. However, for such cases, it loses the advantage of its
simplicity.

Figure 6(b) illustrates what was said in reference 14 and under
item (7). The deflections wy and Wy satisfy the boundsry conditions

together and, as seen clearly from this figure, Wy does not satisfy
the boundery conditions. This relaxation of restralnits causes Pl to

be smaller than P, from the separate case 1 alone (fig. 6(a)).

Usually PO is negligible, but if the bending rigidity of the faces

is taken into account, one simply can calculate Pg in equation (1) for
the effective length L from equation (28), so that from reference 11

ﬂ2E8h5

6(1 - 1/2)1.2 (29)

Py =
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Actually this makes equation (1) slightly conservative, since from fig-
ure 6(b) the deflection w has a sharp breek at the clamped edge, so
that Pg actually will be slightly higher than would follow from

equation (29).

Columns With Batten Plates snd Iatticed Columns

An spplication of equation (1).that shows some other features is
the calculation of the critical stress of metal columns connected by
batten plates with equal spacings (fig. 7(a)) or of timber colummns that
are coupled at equal distances (refs. 3 and 6). In many applications
the deformstion of the batten plates can be neglected. Then the buckling
deflection can be split into two cases. Case 1 is caused by bendlng with
respect to the common axis (fig. T(b)). Case 2 is the deformation by
shear, which bends the single columns between the batten plates in S~curves
(£ig. T(c)). These deformations can occur independently of each other, so
that

- ~1\-1
Pey = (Pl Lip, l) (30)
Including the plastic range, Pl is sufficlently accurately given
by
R T
Pl = 7'2 (31)
where e
I = 2T, + (Ah2/1b) ' (32)

Here E¢ 1s the tangent modulus, h 1is the spacing of the axes of
inertia of the single columns, A is the tobtal cross section of the
composite column, and I, 1s the moment of inertia of the single columns.
In case 2 the batten plates translate with respect to each other without
rotation (fig. T(e)), so that

. 257, I,
2=
o

(33)

where Cq is the effective free length of the single columns belween
two batten plates.
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If also the deformation by shesr and bending of the batten plates
or wooden connections has to be taken into account, case 5 is added
(fig. 7(d)). However, now cases 1 and 3 cennot occur independently,
since the deflection W3 for cese 3 bends the single columns in g single

half wave with respect to their original axes, which is part of the defor-
mation in case 1. Therefore, according to item (5), the proper rigidity
of the single columns 1s first assumed to be zerc and subsequently its
influence is added in the form of Py. Hence, in equation (31) for P,

the moment of inertia I is thalt of the reduced column,

I, = An%/k (34)

since T is assumed to be zero; P remains as given by equation (33).
c 2

From reference 6, assuming only the batten plates (or wooden comnections)
to deform, the individual buckling load for case 3 is

P5 = BhFcv (35)

where c¢ i1s the center-to-center spacing of the batten plates and v 1is
the translation of the single struts with respect to each other per unit
shear force Q (fig. T(d)). In reference 6 the factor B was calcu-
lated for several cases. If the rigidity of the end balten plates is
half that of the intermediate ones, B = 1.

In the present problem P is not equal to the buckling load of
o}

the single struts (in contrast to the case of a sandwich column, where

it was equal to the buckling load of the faces), because during the
deflection wy from case 2 (fig. T(c)) no deflection in a single half
wave occurs. The bending in S-curves between batten plates causes many
inflection points %o occur in the single struts, so that the internal
moment in them is not increased. If the half-wave bending of the single
struts occurred simultaneously with its total deflection w, from item (5)
it would add a reslstance in the longitudinal direction of the strut of

2ﬂ2EtIc/i2. However, since this half-wave bending occurs during the
deflection w - LY only, its curvature reduces in the ratio (wa -16/W)
so that the added axial resistence is

2
W-W22J'CEtIc
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Similerly to equation (23)

so that
W - W'2 _ _ PI‘
——==1 By (38)
and
2
P 2n°E, T
= (1 -E)___%te

Since with a sufficiently large number of batten plates Wy is distrib-
uted sinusoldelly and since for wo and W3 the buckling deflection

at the batten plates 1s arbltrary, by the same reasoning as given in
item (8) for one erbitrary component deflection in the composite case W,
Wo, and W3 wlll also have a generally sinusoidal helf-wave distribution

(actually, from ref. 24, if Co = ¢, the centers of the batten plates are
situated on a half sine wave).

From item (10) the column can be imsgined as being without flexural
rigidity and being laterally supported by a Spring system as shown in
figure 8. The equivalent spring constants are given by equations (5),
(6), and (9) and by a similar equation for Cz. In the same way as shown

for a spring system with spring constents Co» Cq, and Co, this leads
to an equation like equation (1) which now contains a term with P3. The

requirements of items- (1) and (7} for equation (1) to be exact are not
entirely fulfilled here, since between the batten plates the elastic
lines in the various cases are not exactly similar, although their over-
all shapes are those of half sine waves. They will be closer to that
shape, the larger the number of batten plates. Equation (1) for this
problem is - : o

- _ -l p -1 -1\-1
Pcr—Po+Pcr-PO+<Pl + P, + P ) (40)

2 )
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where Pg, Py, Py, and Pz are given by equations (39), (31) with I

replaced by I, from equation (34), (33), and (35). Dividing by the
cross section A gives

2
Tt
- - -1y -1
Oopr = Og + Op = 0p +-ZE;7;5§ = 0g + (?l 1y oo 1y o3 3) (k1)

vhere ln/r is the effective slenderness of the reduced case,

-

2
g = .“—Et—
1 (Z/r)z
2
7
B T (k2)
2 2
(co/rc)
2
- B
9. = cvA )
and
r2 = I./A = bZ/k (43)

From equations (39), (41), and (42),

o = (1 - %)_fft_ - l1- <°°/r‘-'>2 (“ZE*" ()

A (Z /rc)2 - lp/T 1 /rc) 2

As shown more extensively in reference 6, equation (41) may be written
as

2

Oz = ——t | (k5)

cr (Zeq /r) 2
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where the effective slenderness’ Zeq/r is given by

() (46)

= o [(12/2)? - (cofze)?]ee1)?

From equations (41) and (L2)

(Zr/r)2 = (1/r)2 + (co/rc)2 +l;2EtAcv/(Bh2)] (&7)

With connections of venishing rigidity, the factor v in equation (47)
becomes infinite, so that equation (46) yields the correct result,
namely, that the effective slenderness is equal to that of the single
struts 1/re. In contrast, for example, equations (348) to (350) of
reference 25 and equations (96) and (97) of reference 26 for infinitely
weak connections yield zero buckling loads. From figures T(c) and T(d)
a batten plate at the center of a column has no effect, so that for a
column with end comnections only, one has to assume that the spacing of
the batten plates is c = 1/2. -

An exact formule for the buckling stress of these columns hae been
derived in reference 24 for the case in which co = ¢ and the rigldity
of the end plates i1s half that of the intermediate ones. Changing the
reduced modulus to the tangent modulus E; gives the buckling condition

i

T T
cos & - cos Av
- n H — |1+ E%E— (l - cos %)] (48)
2r, (l - cos g) sin — = s

where n = 1/c and m ='(Zequ)/(c/rc). For this same case, in equa-
tions (46) and (47) ecg =c end B = 1. Table V of reference 6, given

as table 1 herein, contains some values of m calculated from equa-
tions (46) and (47) as well as from equation (48) by Mr. Lie Hen Yang.
It refers to timber columns built up from single struts with dimensions
8 by 20 centimeters, the smaller dimension being that parallel +to the

plane of bending; Ey was assumed to be 100,000 kg/cmz. Table 1 shows

that equation (46) is conservative and indeed is more accurate for large
numbers n than for small ones. The general accuracy is very satisfactory.
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Similer formiles were derived in reference 6 for latticed columns,
coupled by diagonals only (fig. 9(a)) or by diagonsls and verticals
(fig. 9(b)), using equation (1) with Pz, . . . Py equal to zero. If

I 1is replaced by I, from equation (34), Py is given by equation (31);
Py represents the exial resistance of the single columns, so that

2B T, (1)

12

In order to find P, it is observed that for case 2, where the single

columns are assumed to be Infinitely rigid against axisl strain, a
slope B of the column with respect to its originsl axis causes a trans-
verse shear force Q = Pof that has to be resisted_by the lacing. Denoting

as Q' the fictitious transverse shear force that would csuse & unit
angular distortion, the equation Q = Q'B 1is obtained, so that
Py = Q' (50)

Inserting Py, Py, and P, into equation (1) gives

(51)

As may be easily checked, for a column with disgonals only (fig. 9(e))

Q' = EAg sin“a cos o (52)

where A3 1s the cross section of the diagonals. For the arrangement
shown in figure 9(b)

1/ = [l/(EAd Sirfea' cos a,):l + (ta.n a./EAv) | (53)

where A, 1is the cross section of the verticals. For both these cases
an upper limit for P, is that of the single struts with a free

length c¢ and slenderness c/rg. With diagonal cross sections Az = O,
equations (52) and (53) yield Q' = 0 and equation (51) reduces correctly
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to the critical load of the single columns, in contrast with equa-
tions (335) to (339) of reference 25 and equations (93) and (94) of
reference 26 which yield Pg,. = O.

Sandwich Plates With Orthotropic Core

A comprehensive discussion on the application of equation (1) to
the elastic and plastic buckling of sandwich plates was glven in refer-
ences 11, 12, and 1. It was shown that equation (1) is exact if Wy,

Wo, 8nd w have the same shape, such as occurs for a compressed long

plate with simply supported unloaded edges. In that case the require-
ments for exactness, steted in item (1), are satisfied. For a long plate
with simply supported long edges that is subjected to shear, the deflec-
tions Wy and wp, differ somewhst, but nevertheless results obtained

in references 22, 23, and 27 differ less then 1} percent from those from
equation (1). This is due to the fact that, although wp and wp

differ in shape, the rigildities of imsginery X- and Y-strips (parallel
and perpendiculer to the long edges) are still of the same order of
magnitude belng simply supported et the nodel lines and at the long edges,
respectively.

strips running in the X-direction (the X-strips) have & rigidity that
differs from that of the Y-strips (fig. 10(a)). For isotropic sandwich
plates this occurs for a long compressed plate that has clamped unloaded
edges. For case 1 (deformetion from bending) the clamped Y-strips are
much more rigid than the X-strips, which can be assumed to be simply sup-
ported et the transverse nodel lines. On the other hand, 1n case 2
(3eformation by transverse shear forces) in.any buckle both X- and Y-strips
deflect in hslf sine waves so that thelr rigidities are of the same order
of megnitude. As explained in reference 1% and item (7}, for cases where
LAl and wo differ in shape two influences occur, one that tends to make

equation (1) conservative and another that tends to make 1t unconserva-
tive. In the present case the latter influence, due to the fact that
the boundary and continuity conditions heve to be satisfied by the total
deflection w = Wy + Wp and not by wy end wp separately, is pre-

dominant, meking equation (1) unconservative by T percent (ref. 28).

Apparently the fact that in the combined cese w; and wp do not
satisfy the boundery conditions separately is meinly due to the differ-
ence in rigidity of X- and Y-strips and not to the difference in shape
of the deflections w; and w,. By prescribing a constant ratio -wém/wlm

for the amplitudes of the deflections in cases 2 and 1, one prescribes
that the ratio Woxm/"1xm of the amplitudes of the center X-strip-is



NACA TN 4085 - = 29

equal to the ratio Wéymlwlxm of the amplitudes of the center Y-strip.
Actuslly in the composite case this camnot be true. If Wosm [ ¥1sm is
equal to «, Wéym/wlym will be much more than o becsuse of the

clamping of the Y-strips since wiym is and Wéym is not affected by

the clamping, as explained previously. Hence, with a prescribed ratio
Wémfwlm = Woym/¥Wixm = WEyHJijnp one could imagine that for the center
Y-strip Woy has negative end deflections -~w. and wiy has positive

end deflections Wy, = Wp, (fig. 10(b)). Then the boundary conditions

at y =0 end y=Db eare satisfled by w = Wy + Wy = wip - Wép = 0,
while the ratio w a/wiya of the ampiitudes of the actual deflectlons
is more than the ratio Wéyn/“ﬁynv as it should be. This shows the

relaxation of restraints for the component cases 1 and 2, which mskes
the actual buckling load smaller than that obtained from equation (1).

Although for isotropic plates with different rigidities of X- and
Y-stripes equation (1) is still sufficiently accurate, for sandwich plates

with anisotropic core, where the ratio G-y/Gx differs too much from 1,

as stated in reference 1%, equation (1) becomes too inaccurate. From
the preceding discussion, the obvious way to improve this situstion is
to admit a ratio wéym/“lym for the Y-strips that differs from the ratio

Woum/Wiym £Or the X-strips. This leads to equation (2) that will be

shown to give eaccurate results for anisotropic sandwich plates and also
more accurate results then equation (1) for isotropic sandwich pletes.
Equation (2) will now be derived.

Derivation of Equation (2)

Consider a long sandwich plate with isotropic faces, an orthotropic
core compressed in the long (X) direction, and arbitrary boundary condi-
tions at the unloasded edges (fig. 11). After splitting off the proper
rigidity of the faces (item (5)) the plate is considered as a grid
consisting of X- and Y-strips, but due account is taken of the restraints
exerted upon these strips by the twisting moments along thelr long edges.
This same method was applied by the author in reference 29 and in earlier
papers for deriving simple formulas for the bending moments in rectangular
plates under seversl loading and boundary conditions. From item (1) the
deflections of these strips are split into those from bending about the
cormon middle plene (case 1) and from transverse shear (case 2).

Iet the lateral restraint offered by the X-strips in cases 1 and 2
(cases 1x and 2x) and that of the Y-strips in cases 1 and 2 (cases 1y
and 2y) be equivalent to that of elastic foundations with foundation
moduli of Cyy, Coxs Cly’ and . CEy’ respectively. Hence, if in the
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composite case the deflections from cases 1 and 2 have the same shape as
in the individual cases, from equation (8) the equivalent spring constant
of the reduced plate is

-1\-1 - ~1\-1
Cp = Cy + Cy = <c:::|_x"l+cax l) + (clyl+C2y l) (54)

because the resistances of X- and Y-strips just act additively. The
equivalent spring constant of the actual plate which is similar to
equation (10) is

-1
C=Cy+ Cp=0Cp+ <clx‘l + cax'l) + (cly'l + cey'l) (55)

where CO is the equivalent spring constent for the proper rigidity of

the faces (case 0). The equivalent spring system is shown schematically
in figure 12. Using equations similar to equations (5), (6), (9), (13),
and (14), where the subscripts 1 or 2 are replaced by lx and ly or 2x
and 2y, in a way similar to thet in which equetion (10) reduced to equa-
tion (1), equation (55) reduces to equation (2). In equation (2) Pys

Plx’ P2x’ Ply’ and P2y are the buckling loads for the individual

cases 0, 1x, 2x, ly, and 2y, respectively. Similarly to equation (1),
equation (2) is exact if the component deflections Wor Wixs Woxs Wiy

and Voy for these cases have the same shape and if these shapes are

the same in the composite case as in the separate cases. Since for

case 2, for simply supported as well as for clamped edges, the X- and
Y-strips deflect in half sine waves (refs. 5 and 12), equation (2) will
be exact for simply supported isotropic or orthotropic sandwich plates,
where for case 1 the deflections have this same shape. However, as will
be shown, for other boundary conditions also equation (2) is very accurste

(meximum discrepancy sbout 3 percent).
Application of Equation (2) to Orthotropic Sandwlch Plates
With Simply Supported Edges
Equation (2) can be applied to orthotropic sandwich plstes with

simply supported edges as follows. The restraining force exerted by an
X-strip per unit plate surface can be written as (fig. 13)

Rx = - — o . (56)
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where Qy 1s the transverse shear per unit width of the strip. From

equation (102) of reference 30, for case 1 (bending only), by adding the
subscript 1,

Y
Q]x=ia—aM§j‘+—§yﬁ (57)

and in the same way from equetlon (37) of reference 30

P, By
My = N5 + v 52 (58)

where Ng 1s the flexural rigidity of the reduced sandwich plate, and Vv

is Poisson's ratio. As explained previously for the reduced case the
proper flexursl rigldity of the faces 1s neglected. The bending rigidity
of the core is always negligible, so that (fig. 3)

_ Egh(t + n)2
2(1 - ¥°)

where Eg is the modulus of elasticity of the faces (skin). From the

equations on page 11 of reference 31 it follows that, using again the
subscript 1 for case 1,

(59)

2
= - = - Lw _lorx 1oy
Mlyx -Mlgy Dlxy < x oy 2 Oy ) ax>

The shear angles 7x &and 7Yy can be expressed in terms of the deflec-
tions wp, eand Woy for case 2 occurring from shear alone, since

obviously

e (60)




32 NACA TN 4085

Further, since the faces are isotropic, the ratio Dlxy of the twisting
moment to twist is Ng(1l - v) as it is for an isotropic plate, so that

w1 azwéx 1 azwéy
Migs = Ne(L - VS " 2oy "2 5% oy (61)
Since
Woy = W = Wiy
(62)
Voo = vo- Wy
2 2
o w o w
__1 - 1x Ly

Insertion of equetions (58) and (63) into eguation (57) and of the latter
into equation (56) yields for case 1

2. 3 ok 3
Rlx=----lx- --—-M=Ns—f3+5(1-v) T1x + (1 + ) My
32  Ox oy a2 3x2dy2 2 32dy2
(6k4)

If the lateral restraint given by the X-strips in case 1 was given by an
imaginary elastic foundation with a foundation modulus Cy4, Ry would

be equal to Cyywiy 80 that the equivalent spring constant is

4 oo b
R N, |0 'w dw dw
01x='lx= 812 X L (1o ) 2 L L(14v) X (65)
Vi Vix| axt 2 3x2yye 2 axPdy®

Similarly the equivalent spring constant for the Y-strips in case 1 is

LA L TP .L CIER AL ) RS
c = v +=(1L+vV
ly = le le L 2 ax28y2 2 ax23y2
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The moduli of rigidity of the core agasinst transverse shear forces
Qy and Q,y. are denoted as Gy, and Gy, respectively. From equa-

tions (6) end (7) of part I of reference 5, Q, and Qy for case 2
can be expressed &s

~
_(z + n)2 Gx
Bx (61)
> T
agy = L% n)2 o oy
£ v 3y )
so that, using egustion (56) and analogous to equations (65) and (66),
3\
2
oo oEx _ 1 Moy _ (b +n)® G O Vo
2X"wax— Vo, Ox t Voy Ox2
’ (68)
2
o By _ .1 %%y (t+n)? G oW
& T Vay oy oy T oy ay2 ]

For a long plate with simply supported unloaded edges the boundary
conditions are satisfled 1f

WV W V.
F_0 xRy XXy (6)

m Yom Yixm VYoxm Viym Yoym

Inserting this into equations (65), (66), and (68) gives

N
Ch=ﬁN —-l—+-]=(l-v)i+-32(l+v)—el-

: (70)
c =3‘£Nsl+i(l-v)—l-+l(l+v) %
Ly b 2 52 eyga
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Coy =

ol

(t+h)2G
t X

th“

(72)

(v +n)?

+
t p4

ol

CE’,Y'=
where a 1is the half wave length in the X-direction,

B =a/b ' : (72)

and.

, (73)

From figure 12, since the springs with constants Ciy, and Cpy have
to carry the same losad,

€y 1 = Coxiom (74)
s0 that

Ox = wb:llfnwm = clxcfx T (15)
Similarly

oy = —Sym__ ey (76)

Voym T Youm B Cly + C2y

Inserting C1, and Cpy from equations (70) and (T1l) into equation (75)
gives

= 1l
0y = - " (77)
1+ rX(BQ + ) + — )
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where
r, = :raNst (78)
b2G,(t + h)2
Equation (77) can be written as
1 1 - 1
’}L+ <?+ Ev)r{’ex+ ; vrxey— 1 (79)
From equations (70), (71), and (76)
1
0. = (80)
Y 1-v1l . .1+v ©
1+ ry<l+T-ﬁ—é'+-—2—By%>
where
oWt (1)
.. =
¥ vlay(t + h)2
Equation (80) is written as
l;; Y ryBy + [52 + (Ba + & 5 ")r&ey - g% (82)
Solving equations (79) end (82) for 6, and Oy
\
2 2 1l - 1 2
. I}+B+ av)ryii-%ﬁrx
< = — o — — —
1+(B,—]é+ lév)rx 82 + <}32+L—;—-’-’-)ry -%(l+ v)a.c'xry
— JL s r(83)
- 2
6y - 1+ 8—32-+12V)rx]3-1'£"ry
T 1 - a2 2, 1- T
1+ (‘—;5+ 2V>rx BT + (5 + 2v)r.Y _%(1+v) TyTy
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In equation"(E) Py 1is the buckling load of the faces if buckling alone
occurs, so that, from equation (g) on page 329 of reference 26

P, = %ZE (3+ o) (8%)

where N 1is the flexursl rigidity of each of the faces. Further, in
equation (2), in connection with equations (5), (6), (69), and (T5),

c

_ -1 PP
(PM1+P2X1) C % __p =02, (&)

Pl‘X.+P2X C]_X-I-Ca{

Similerly

(Ply-l + Pey-l) i 8,P1y (86)

From equstions (5) and (69)

2
(87)
2
_a
Ply——’tECly )
Hence equation (2) can be written as
er =52 (VP +;(x°1x+ ¥°13)

which result could also have been obtained from equatlon (55) in combination

with equations (9), (11), (69), (75), (76), and (84). Using equation (70),
equation (88) yields

s S e (0] @
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where 6, and 6y are given by equation (83). As stated previously,

this result is exact. This will be shown in the next section by comperi-
son of a more general formils with the results obtained in reference 32.

For isotropic core Gy = Gy =G and ry = ry =T, 80 thet from equation (83)

B2+l;v(l+ﬂi)r

Ox = Oy = 6 = (90)
2,25 -Y 2 l1-v/1 2
B +——2 <1+B)r+ > <B+B)2r
and equation (89) becomes
2 2
Pcr=:’;—2(%+8) (ow + 6Ng) (91)

This result. can be shown to be identical to that given by equation (31)
of reference 11 for 7 = 1 (elastic range).

Plastic Buckling of Corrugeted Core Sandwich Plates, Hinged
or Clamped at Unloaded Edges

A cross section of the plate is given in figure 14. Considering
first case 1 (bending only), from equation (30) of reference 33 or
equation (22) of reference 34 the bending moment My from bending about
the middle plane of the sandwich and carried by the faces, considered
as membranes only, is

aawlx azwiy (92)
M-, = -E.I. |B + D 92
1y 8°s axz ay2
where (fig. 3)
1 2
Is =—2-h('b+h) (93)

2 2
For obtaining Mj, the moment —Ethc(B wlx/éx ) taken by the corruga-
tion cross section, where Ei. 1is the tangent modulus of the corrugation

material, mist be added to the moment carried by the faces. Hence, using
again the same equations from references 33 or 34,
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dx? dye
| (9%)
2 2
E o d
= -EgIg A+u—t—°-> Tlx 5 21y
Eo ) % dy?
where
EI
u=ESLI:- (95)

and E, is the elastic modulus of the corrugation material. From the

same references the ratio Ns(l - v) of the twisting moment to twist
in the plastic range changes to 2E;IF so that, instead of the present
equation (63),

P, D
My = ~EgI F <ax %"y‘ + axwg) (96)

The plastic parameters A, B, D, and F are given by equations (22)
to (24) of reference 3% and equations (21) or (2la) of reference 3.
Using equations (9%) and (96) gives, instead of equation (64),

3y, My
Fax = - 3x2  Ox Oy
b % ! b
i\ O Wix vy dwix OV
= BT (A + 1 + B + F +
e ( Ee) duct 22\ u? wP oyt o)

from which, instead of equation (65),
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In the same way, using equations (92) and (96) gives

3%, M g1 | o o ak
Cly = - 131' - lﬂ le- = 8 B8 D wly +F wlY +(B + F) _&
32 Ox Oy iy | oyt a2 R a2 dy?

(99)

Iet the deflections now be, as was done for laterally loaded slaebs in
reference 35 and for a stebility problem in reference 36,

ﬂ W
wlx = Yx 8in T X
L (100)
= x
wly = Yy sin Y x
J
where
N
Iy = zwmum
> (101)
Yy = ZWymum
Y,

Here Wym and Wym are constants and the u, are the normal functions

that automatically satisfy the boundary conditions at the unloaded edges,
since they represent the modes of vibration of a Y-strip. These functions
have the general form (ref. 37)

uy = Cy (cos any + cosh a.my) + Cz(cos Ay = cosh a.my) +

Cs (sin Yy + sinh cxmy) + Cll_(sin oy - sinh amy) (102)
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so that .
)
L
duy
5  ‘ntm
& > (103)
daum -
bl S, W
dy2 J

However, since the functions wu, are orthogonal, ﬁm # u, can be
developed in a series of uy:

ﬁm = klmul + kzm:IJ.E + k3mu3_+ « e s (lOll-)

It appears sufficlently accurate to use only the first terms of equa~
tions (101) snd (3104). Hence

2
d™u
1 ~

Insertion of equations (100), (101), (103), and (105) into equation (98)
glves

E I E L 26.2’Y 26.2Y
__8® _te) x_ T X _ __.__.
“x T g <A+u )ahY Fa.2dy2 ®+® 3 2 ay2
i E 2 ' o
= X BT, <ﬁ+u-i(-:>-l—h-——}2—-l—l[li‘+(B+F)—y—:' (106)

Similerly one obtains from equation (99)

L mlhbh . b5 %k

T 1711 O
Ciy = ;X EgIg " v F+(B+F)Z Gy (107)

s
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Instead of calculating Qq and kll for various boundary conditions, it

may be observed that, if one or two of the unloaded edges are either
simply supported or clamped, from equation (L41) of reference 12, the
buckling load of a homogeneous plate is

2 )
Py = %2- EIES% + p(B + 2F) + qDBﬂ (108)

where p and q are given in table 1 of reference 11. Hence, with

w=Y sin g x (109)

where Y 1is a function of y ealone, the equivalent spring constant is,
analogous to equation (5),

3w i < Ia 1
c=-p, 2 ¥ ;=2 p =—EEI,—+pB+25')—+qD (110)
b 3 a B b Bh ( B2

From equations (106} and (107) for a homogeneous plate, where ey/éx =1
B.D.d. IJ-=O,

2 L
A__E_bz_ulﬁl_(Bq.ZF).yﬂ_D (lll)

=

’t —

C=Clx+Cl =—ESIB
AR Bu 72p2 &

Comparing equations (110) and (111) gives

w
Eb%ml 11
T = —P
(112)
S
ot
J
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go that equations (106) and (107) become

NACA TN 4085

L E )
e =X BT A+ p=ClLt s R ir+(B+F)L
x = L 7878 < Ec/pt  2p2 ( ) Ox

b )
Cao =X B.I.3qD + == |F + (B + F) =~
Wy Ty e ¥ 22 ¥ g‘ ¥ _) 94}

(113)

For exsmple, for clamped edges, from teble 1 of reference 11, p = 2.5
and q = 5. From references 35 and 36 for these boundary conditions,
@y = 2.365/c, where c = b/2 so that aqb = 4.73. Further,

k17 = -0.54984. With these values
2
2% By _
—=a= = -2.5
2

a
;n

=5.15
n

/

(114)

which is in excellent agreement with the more accurate values -p = -2.5

and q = 5 from equation (112).

Defining, as in reference 31, the shear stiffness
of shear to shear angle or

DQX = Qx/7x
Do, = /7y
In case 2

2x
%x = Do,7x = Yoy 5y

%y = Da,7y = Dq, 3

DQx as the ratio

(115)

(116)
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where DQX and qu are given in reference 38. This gives, analogous

to equation (68),

cg}{:R_ac:_;_E_aQex:_D_Q:saa"zx
\
D 2
C =-_Q_"Y_awa
¥y P

Using equation (69) this becomes

_ 52
Coy = = Dy
2
Cow = %D
2y b2 U

(117)

(118)

Insertion of the first equations in equations (113) and (118) into equa-

tion (75) yields

1

ex=

where

from which

5
1+Ex{(A+uEEb—:)BlE+§|:F+(B+F)§§:!

(119)

(120)



Ll NACA TN L4085

From equation (T6) and the second equations in equations (113) and (118)

- 1
6y = . 5 (122}
1+ fy{qD+—P—2[F + (B + F) B_XZI}
2B v
where
2g_1
i'y = ﬂ2 B5 (123)
b<Dg
v
From equation (122)
2 (B + F)fyox + [52 + (q_DBE + 2 F)E;J oy = B2 (124)
Equations (121) and (124) yield
N
e B2 + (qDBe +Z F)I'y - % (3 + FIBPR, |
x = A+ E ' >
{1+ < “Z”;c +2 F)f% E2+ (6243 ¥) fy] - (+W)%dy
" B 5 (125)

A+ E -
[11»(__“?’;21_%%3)5}132-%(3”)%

y =TT . - — = .
[14. (_f_pi_téﬂ +.123 F)r{\[BE"' (q_DBE +g F)ry:‘ - PI- (B + F) rxry

e

In connection with equation (100), equations (85), (86), and (87) apply

nere as well, so that equation (2) becomes, analogous o equation (88),

Pop = Po + i—g (8xC1x * 8yC1y) (126)
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where Py can usually be neglected. For simply supported plates, from
references 11 and 12,

on2E T
PO=__S_f[_A.+2(B+2F)+Dﬁ2] (127)

where (fig. 3)

Ip = b/12 (128)

For clamped plates the deflections iy and oy of the Y-strips are
shown in figure 15. Hence only for the deflection Viy do the faces
act as clamped, while with the deflection Woy they practically act as

simply supported so that in accordsnce with item (5) in the section
"Description of Method"

W W

where Pp, is identical to P, from equation (127) and, since the clamped

edges p=2.5 and q =5 (refs. 11 and 12),

Bbe

2x2E
Pop = 5N A L 2.5(5 + oF) + 50p2 (130)
82

Equation (129) is slightly conservative, since for case 2 the bresk in
the faces at y =0 and b requires extra energy. Hence, for simply
supported unloaded edgés, from equation (126) using equastions (113) and
(127) with p =2 and q = 1,

27°E_ I, [
Por =—b;—lf -:‘—2+ o(B + 2F) +DB2]+

BT, |[A + (MEy o /E)
o2 82

+ (B + @ﬂex + [(B + 2F) + 13132:! oy (131)
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For clamped sandwich plates, from equations (113), (126), (127), (129),
and (130), with p = 2.5 end q = 5,

2 . :
2x°E Iy [T p
P =— ST} & 1 ) ke ) Dp?
or = 52+<2+29y(3+25‘)+(l+ Y)DB]+

2
i1 ESEIS E\ +L“EtcLEc) +1.25(B + EFEl Oy + EL.25(B + 2F)+5DBE:| Gy
b B2 |

(132)
where 0y and Gy are given by equation (125). Besides from the
formiles in references 33 and 34 A, B, D, and F can be read directly

from charts in reference 39 as functlions of the secent end tangent modull
for the actual buckling stress oy, = Pcr/zh.

In the elastic range, from references 33 or 34,
A=B+2F=D=1/(l-v2) (133)

80 thet for a simply supported plate equation (131) reduces to

2x B (1+B)2+ "Bl 4 (1-

For = 3 (1 - v2)p2 g2

cr - Rl +3fo + (1 + [:32)9y

(13k)

where 6y eand 6y from equation (125) with p =2 and g = 1 reduce
to
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2
2 J1-(1-+3u B2 |= __ 2 .
B +’.' Lo 2 AT V)X T AT -y Y

B =
Y 1+ l+(l—V2)u+l-v Py 132+ B2_,_]_-11 f‘y - f;é"v
B2 2 J1 -2 2 J1 - 92 1+@.— vaz

(135)

If the proper flexural rigidity of the faces is neglected (If = O) and

Pcr is written in the form

2
T ESIs
12

Per = kg

(136)
kg from equation (136) can be shown to be identical to k; from refer-
ence 32. With W = 0, since in equation (135) Ty = (l - ve)rx and

ry = (l - ve)ry, these equations for 6y, Gy, and Pgopr reduce to
equations (83) and (89), so that also these equations are exact.

For a clamped sandwich plate in the elastic range equation (132)

reduces to

2
2n"E_T 1 1
P°r=@_—1%§2'[;3+2+§ey+(l+hGY)62]+

BT [ 14+ (1 -2
- vy 2
oA 5 + 1.25/6y + (1.25 + 58 )ey (137)
- vy B
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where, with p = 2.5 and q = 5, from equation (125)

2 562 + 0.625(2 - ¥) 2
. B +—T_—vé——iy-_0-625tii—vfx

. - - —
{1 + [—(—lﬂl e h v2JE 4 0.625(1 - vﬂ - fXVE} {ﬂa * [SBE + 0.855(2. - vi] - fyvz} - l:‘(:ﬁfxg)

B
v (138)

2 (1+(a-Au 27 1
8 + 2 +o.6251—%rx-o.625

r
1 - Y l-vY
6, = )

v 1+ (2 -2k . z 2 2 4 oudasa - M| | - 2y
{1+I:J;é——+°'625(1 v)l—_z-? g +|:55 + 0.625(1 Vﬂl_ve 16(1-V2) J

For isotropic core, Tx = f.y = (l - vz)r where r 1s given by equa~
tion (78) or (81) with Gx = Gy = G or

7B I,
(1 - v¥)bfec(t + 0)®

(139)

T =

Here G, is the modulus of rigidity of the core. Further u = 0. Thus
equations (137) and (138) reduce to -

2x°E_I

Pop = -(:—i—g)ib—a[ﬁ—z + 2+ % ey_+ (1+ hey)sgil +
1 . o . |
m (Eé + 1.25)9x + (1.25 + 58%)ey (140)
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where

B2 + [3.75;!2 +0.625(1 - v){1 + Baﬂz

B2 + [1 + 582 + 0.625(1 - v)(l + Bzﬂr + [5.1575 + 0.625(1 - V)(_:E + 2.5 + 532)]1-2

8y =

% (1¥1)
by = | 82 - [0.25 - 062501 - (1 + g3
g2 + [1 + 562 + 0.625(1 - v)(1 + 32)} +[:3.k575 + 0.625(1 - v)@-g + 2.5+ 552)Jr2

J

It seems that the maximum discrepancy between the simple formulas
for isotropic~core sandwich plates derived in reference 11 and the exact
calculation occurs for the present case of clamped edges. From refer-
ence 28 both lead to the same buckling loads for r =0 and rZ 1 and
the maximm discrepsncy of 7 percent occhrs if r 1s sbout 0.25. Fronm
table 1 of reference 28 where, as usually can be done, the proper rigidi-
ties of the faces have been neglected, a minimum value of the buckling
stress coefficient

vPp,,. (1 - e,

k = cr

= 12
7eNg 1B Ig (142)

occurs with r = 0.25 for B = 0.6 where k = 2.88, while from refer-
ence 11 for the same cese k = 3.08. Also equations (140) and (141}
with Ip =0 for =0 and r 2 1 lead to the same values of k as
these given in reference 28. For the case of greatest discrepancy

between references 11 and 28, with r = 0.25, B = 0.6, and V = 0.333,
they yleld 6y = 0.52k, 6y = 0.27%, and k = 2.9%, or only 2 percent
more than the exact k velue from reference 28. On the other hand,

" though more accurate, equetions (140) and (141) are more intricate than
the equations derived in reference 1l. Their adventage with respect to
those in reference 28 is that an explicit formule is obtained for Pop
or ke .

For sendwich plates with orthotropic core, where as stated in refer-
ence 14 the method of references 11 and 12 cennot be used if the

ratia Gy/Gx differs too much from 1, the present formulas lead to very

accurate results. It was shown in the foregoing discussion that for
simply supported plates they are exact. For clamped plates, in the
limiting case where ry, = O and with p =0 and Iy =0, equations (137)

and (138) reduce to
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Py = E’fESi__;b_e (;5}5 * 1.25)ex + (1.25 + 58%)ey (243)
-V
By = 1
8% - [ 0.65%,/(1 - )] (144)
e =

Vg2 +{[5ﬁ2 + 0.625(1 - )| fy/(l i Ve)}

From these formulas, for example, with f$ = 1, fy = 0.25, 1, and «cay
end Vv = 0.35, one finds that '

gP
b cr . ( lll-5 )

s A,

is equal to 4.67, 2.59, and 1.45, respectively. From figure 4(a) of
reference 32 for B =1 and the same values of Ty, kg is 4,55, 2.51,
and 1.%0, respectively, so that the discrepencies are not more than

3 percent.

This shows that also for sandwich pletes with orthotropic core the
method of split rigidities leads to accurate results. If necessary,
gimilar formulas can be derived for other boundary conditions.

Buckling of Homogeneous Plates Under Nonhomogeneous
Stress Distribution

Ttem (6) in the section "Description of Method" can be used to celcu-
late deflections of columns and plates with initial crookedness, as was
done in footnote 2 of reference 1 and in reference 15, respectively. It
can also be used to find the axial resistance of initially flat plates
under nonhomogeneous stress distribution, as was done in references 15
and 17 for plates in the postbuckling stage.  The same method can be
applied for calculating the critical load for incipient buckling of plates
under initially nonhomogeneous stresses. In all cases the restraining
or internal action of the plate 1s derived from the case of uniformly
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distributed stress. Hence the condition for the accuracy of this method
is that the shape of the deflection surface for the nonhomogeneous stress
distribution considered is practically similer to that under uniform
stress.

Such a case occurs, for example, with buckling of & long simply
supported flange under linearly distributed stresses o, (fig. 16). In

e similar way as under uniform stresses oy the bending moments My
(and My) will be relatively very small so that the plate can be assumed
to remain straight in the latersl direction or

W = Ky sin'g X (146)

For uniformly distributed compressive stress with Poisson's ratio equal
to 0.3, from reference 40

Oop = k %22%: = 0.425 :izl,: (147)

The external and internal actions that are compared (item (2)) are the
moments of the deflecting and restraining forces with respect to the
hinged edge. For uniform compression the deflecting forces acting upon

a small element t dx dy are -tccr(éaw/axe) dx dy, so that from
equation (146) they can be expressed as

D = C100,W X Ay = COopy Ay (148)

where C dis independent of y. Hence the external moment exerted by
the forces D acting upon & cross strip b dx about the hinged edge
y =0 is

b b
Mey =j2) Dy dy = Cdcrj; v ay =2 Cogyb (149)

Then, from item (6), the moment exerted sbout the hinged edge by the
restraining forces acting upon the strip mist be

g = My = 3 o (250)
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Since under nonuniform compressive stresses (fig. 16) equation (146)
remains valid, also in that case M; is given by equation (150}, With
compressive stresses

Oy = ce<l Iy~ .; y) (151)

the deflecting forces are, analogous to equation (148), D = Couy dy,
so that they exert a moment about the hinged edge of

b b b b
Me=f Dydy=0f ny26y=cce(l‘7)f yzdy""%f yBGy
0 0 ) 0] 0

=uﬁTw@3 (152)

Since M, should be equal to M, from equations (147), (150), and (152)

the critical maximum edge stress Og is

S PR LY (Y o
(%) er = il 24 (153)

For T =1 and 2 this yields k values of 0.568 and 0.850, respectively,
in accordance with values given in reference 40. If the maximum stress o

occurs at the hinged edge (fig. 17), so that e

o, = ae(l - %) ‘ (15%)

and T varies between O and 1, the external moment 1s

b | b S \
Mg =-cn/; oxy® dy = Cog \/; y° dy - % b/‘ yo gy | = =37 0céb5

0 12

(155)
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so that from equations (147), (150), and (155)

4 L.70 =N
o = —— = —_— (156)
(E) cr L - 3 cr h - Zr _bz_b

For T =1 one obtains k = 1.70, in accordance with reference %0.

Ultimate Load of Plates Under Compression

In reference 15 item (6) (section "Description of Method") was used
for determining the postbuckling behavior of & simply supported plate,
the unloaded edges of which are held straight in the plene of the plate,
gssuming the plate to remaln elastic. This method wlll here be extended
?o thehp%astic range in order to find the ultimate load of such a plate

ref. 41).

It was shown in reference 15 that up to deflections of the order
of the plate thickness t practical exact results can be cobtained by
assuming the shape of the deflection surface of the plate to remain
similar to that at incipient buckling, that is,

b Y
W=y sin=xsinsy (157)

where &a = b. Considering the deflection to be developed in a Fourier

series, the distribution of the total direct stress o, in the post-

buckling range, as sketched in figure 18, will tend to superimpose on the
deflection from equation (157) partial deflections Aw = iz sin-— x sin 2} Vs
for which the individual equally distributed buckling stress oy is

25 times that for the mode of equation (157). The stresses oy (fig. 18)

superimpose deflections W3l sin.ég b 4 sin.% y and w33 sin.%% X sin.;g Vs

with individual equally distributed buckling stresses Oy that are 25

and 9 times, respectively, those connected with equation (157). Hence
the required deflecting forces for bending in these modes are much higher
than for bending in the mode of equation (157), which makes the contri-
bution of these modes relstively smgll. In the elastic range the mem-

brane stresses oy, and op, in figure 18 are (ref. 15)
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Omx = Omym Sin % Yy
(158)
2 x
"m;y = Umym sin 7 ¥

In reference 41 it was shown that it is sufficiently accurate to assume
the same distribution in the plastic range. Using a method that differs
somewhat from that used in reference 15 the uniform stress distribution
("x)u that is equivelent to the membrane stresses oy, can be calcu-

lated as follows: If oy = (Gx)u does not vary with y the work done

by these compressive stresses per buckle with deflections w is from
equation (157)

.8 nb
=% ow - 2
L VAT <§§) oy =t (o)u S’ £ (159)

On the other hand the tensile stresses op, from equation (158) would
exert a work

2
;{ 2
o 3 Vo %

& a ~b
xXm
2Jo Jo

o‘l:\
/‘“"\
Q/
\_l%i

%

(

]
Nl

(160)

From equations (159) and (160) the membrane stresses oy, are equivalent
to equally distributed compressive stresses

(161)

(Gx)u = % O pmxm

The work done by uniform compressive stresses (°y>u is

2
-t 2 ab
j f (cy a ( ) ax dy =2 (GY)ui-éwm 'alT (162)
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so that from equations (159) and (162) an equally distributed stress oy
is equilvalent to a stress

(G")u ) :_z (oy)u = 132(f‘y)u (163)

Hence, from equations (161) and (163) the total load on the plate as
shown in figure 18 is equivalent to & uniform load

(9%)u = O%e - E O + 32(_21_ Oyym - E am,m) (16M4)

The membrane stresses Omyxm 8re caused by the increase in length of the
middle strips GH due to the deflection w which amounts to

1% (w2 2
5=§fo o) o= E w2 (165)

80 that the difference between the average direct strains in the strips AD
and GH is '

w1

Assuming, as proved to be true in the elastic range (ref. 15), that Oy

does not vary with x and that Poisson's ratio does not influence the
stress distribution so that it can be assumed to be zero, this gives a
stress

W,

o 2
Omxm = Bgx€xm ='%I Esx(i?) (167)

where Eg, 1s the secant modulus to be applied. Similsrly

2 w, \2
3 m
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so that

_ g2 ley
Smym = B F Omm (169)

At incipient buckling the restraining forces offered by the bending
rigidity of the plate are just in equilibrium with the deflecting forces
caused by the compressive stresses 0y = 104, where 0., 1is the elastic

buckling stress of a simply supported plate (ref. 26, p. 329)

2 2 2 £\
w poif ool o) om

and 1 1s the plastic reduction factor. The deflecting forces are pro-
portional to the center deflection w, of the plate. Since the restraining
forces are due only to the bendling stresses In the plate (the membrane
forces are included in the loadings oy and cy) in the elastic range

they are alsc proportional to the deflection wy. Therefore, with finite

deflections the plate will be able to resist stresses o, and Oy

(inecluding the menibrane stresses) that are equivalent to uniform stresses
(ox)u = Wer (171)

where 7 is the plastic reduction factor of the plate flexural rigidity
at the actual finite deflection wp. Since the actusl loeding of the

plate is equivalent to (Ux)u from equation (16%), combination of equa-
tions (164), (169), and (171) gives

]
e ]
Q

mxm cr (172)

1 Bey
Uxe"%c’n:o.}cm"I,_'B Eﬁd

or
- ll'(o‘xe - ﬁccr)
5 + (B¥Esy/Eex)

Opem ( 17> )
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Hence from figure 18 and equation (158) the average stress, that is, the
postbuckling stress Oxp? is

b
Oyp = Oxe -fo crmxdy=crxe-%cm (17%)

Apparently the postbuckling stress Oxp depends on B = a./b. In genersal,
the value of B corresponding to a minimum value of Oxp will decrease
es the deflection w, Iincreases. However, as explained in reference 41,

the plate will not be free to change its wave length continuously because
at a certain wave length the buckles will "freeze." This process cen be
illustrated by considering & very long plate for which any wave length
would satisfy the boundary conditions. For such a plste the plastic
deformation due to compressive and bending stresses will cause permanent
buckles so that after a certain stress has been reached the wave length
becomes fixed. From availsble test results 1t appears that the wave
length that establishes itself at inciplent buckling is mainteined in the
postbuckling renge. The only plates that exhibit a postbuckling stress
ere those that buckle in the elastic range, where at incipient buckling

B =ga/b=1. Hence in equation (173) B may be assumed to be 1. In

that case Esy/Esx mey also be assumed to be 1.

From references 25 and 42 for simply supported plates with edges
that are not held straight the ultimete load is a function of the yield
stress oyg end the critical stress ogp. The (average) ultimate stress

was found experimentally as

ozt = (bof®)eys = \Fays - 0250 (a72)

Assuming that in the present case, where the edges are held straight,
the ultimete load 1s reached when the edge stresses oy, reach the yield

stress, from equation (173) with B = Esy/Esx =1 and oy = O

ys?

Omym = Oys = M0cp (176)
so that the ultimate stress is, from eguation (174) with Oyp = Oyip and
Oxe = Oysgs

Opnp = Oy - = @ (177)

ult ys =~ o “mxm
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In reference 41 it was shown how for a given case 7 can be celculated
from the plastic deformations of the plete. Since this calculation is
very involved s direct formuls was derived for 71, which for the case
considered was shown to be in excellent agreement with the more exact
calculetion. From reference 17 for edges that are not held stralght in
the plsne of the plate, to which equation (175) refers, the membrane
stresses opyx and opy are equivalent to a uniform stress

(cx)u = -0.8480,, (178)

Also in that case the equivalent loading of the plate should be equal

to TOupe With edge stresses oy, this gives

Oys = 0-8480pg = Ty (1719)
or

Omym = Le180yg - 1.18%0qy (180)

Equation (17%) also applies here so that, with Oxp = Oyyy 804 Oye = Opg,
using equation (180) gives

Cult = Oys - 5 Omem = O-4loyg + O.5gHoe, (181)
and
_ o c.
7= 1.7 28 - 0.7 X2 (182)
cr cr

Insertion of oy34 from equation (175) yields

1

- Oys)? Sys

7= 17(2) - 0.5 - 0.7 “c:- (183)
CI,

Since 7 thus is based on test results for relatively large deflections,
it automatically also contains a correction on the use of equation (157)
in that range. 1In order to apply this result to the present case with
edges that are held streight, it should first be determined on which

veriasbles T depends. It is dependent on the direct stresses gy &and oy
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that vary with oppy (f1ig. 18) and on the bending strains measured bx
the strain difference between both faces of the plate. At the center of
the buckle this difference is

o

Ay, = =t %zg =2 Wt (184)

On the other hand, from equation (166),

28 1/2 _ 2a(% 1/2
= = mm
=T (Sm) T " —(f?) (195)
so thaet from equation (184%), with a = b,
. 1/2
2nt
Deyy, = 5 <—E:f“) (186)
From equation (170), with B = a/b = 1,
. e \1/2
= —cr
ol 0-525< 5 ) (187)
so that equation (186) becomes
1/2
23 a.
Deyy = 5.3(—E°£ ’E'I:_j:m) (188)

Hence, since ﬁ depends on Oy, 8and A€y, it obviously can be con-
sidered s a function of opy, and 0g,.. From equation (179)

G o
I8 - o.848 =X 4 3 (189)
Ter Ocr .

Inserting this into equation (183) gives 7 as a function of oOpyy
and Oap
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- Oy Omym 1/2
§ = 0.25 - 0.35 22 4 0.71<E;-r—) (190)
cr

With this value of T for the present case, from equation (176),

1/2
c o o. (o]
mm = ——ys - 0.2 + 0- m - 0. l mm l l
Jep Jer 2 % Ocr f Ier (192)
from which
g o 1/2 2
XM _ | _0.545 + {1.54% L& - 0.0865] " (192)
Ocr Ocr

After calculating op,, from equation (192), 0,74 follows from equa-
tion (177).

In figure 19 o o from equation (175) has been plotted as a
ult/“er

function of Ucr/ays as the dashed curve (). In the same figure perti-
nent test results for simply supported plates with edges that are not
held straight in their plane are indicated by squares, as plotted from
reference 43. The squares refer to square-tube tests by Needham (ref. Lk)
and the diamonds refer to V-groove tests by Anderson and Anderson

(ref. 45) which are also shown in reference 43. This shows that formula
(175), determined by Winter from tests with light-gage steel (ref. 42)
1nvolving plates that are not held straight in their plane, leads to
excellent results. Hence, the formula for 7, derived from it and pre-
sented herein as equation (190), can be considered as well based. There-
fore the combination of equations (177) and (192) can be expected to
yvleld satlsfactory results for plates with simply supported edges that
are held straight in the plane of the plate. In figure 19 cult/dcr

from these equations has been plotted against dopfoyg as the solid
curve C); the test results from Botman (ref. h6), as given in refer-
ence 43, are indicated by triangles. These tests were done with three-

bay plates between knife edges so that the edges were not held completely

straight. The test results should therefore be located between the
curves (:) and (:) which indeed occurs. The theoretical results from
reference 43 for plates with edges held straight are indicated by circles.
These are & little above curve C). This may be because in reference L3
Poisson's ratio was assumed to be 0.5 for plastic as well as elastic

deformations which increase the plate rigidity above its actual value.
Hence equations (177) and (192) yield reliable results.
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Formulas based on the same principles have been derived in refer-
ence 41 for the ultimste load of simply supported and clamped plates
under the additional influence of thermsl stresses. Also formulas were
derived for the equally distributed stresses (oy), and (%y)u thet

are equivalent to arbitrarily distributed thermsl stresses Oy &and Oy
as far as critical as well as ultimate loads are concerned.

PROBLEMS WHERE COMPONENT CASES HAVE DIFFERENT BOUNDARY CONDITIONS

Problems where the component ceses have different boundery condi-
tions have been dealt with in references 13, 16, 17, 18, and 19. As
pointed out under item (6) these problems lead to more intricate relations
between P.. and Py, Po, . . . P, than those where the boundsry condi-

tions for all cases are the same. A simple exemple is' the problem of
determining the buckling stress of an I-section gbout itz minor axis.

The buckling deflection of the cross section is shown in figure 20(a) and
is split into case 1, a deflection as a column without distortion of the
cross section (fig. 20(b)) and case 2, a distortion of the cross section
(fig. 20(c)). This problem was dealt with extensively in reference 13
vhere the deflecting and restralning forces were chosen as the externsl
and internal actions. This method was sufficiently accurste because the
decrease of the columm buckling stress o) (case 1) or plate buckling

stress ogp (case 2) from the interaction of cases 1 and 2 was only a
smaell fraction of the actuel buckling stress.

Somewhat more accuracy can be obtained by comparing the work done
by deflecting and that done by restraining forces. This method was used
in references 17, 18, and 19. Tt will be demonstrated here in deriving
the buckling stress of stringer panels. '

The stringer panels considered are supported by stiffeners of equal
cross section and located at equal distances b (fig. 21). The half
weve length of buckling in the X-direction is denoted as a (fig. 22(b)).
If no stiffeners were present, the buckling deflection of the plate would
vary sinusoidally in the X- and Y-directions. If stiffeners are present
and the deflection wy (fig. 22(a)) which determines the deflection of
the stiffeners varies in the same way, the additionsl deflecting forces
-tcx(aawfax?) per unit plate surface, caused by the additional compres-
sive stresses Oy which the panel can sustain due to the stiffeners,
will as a whole vary sinusoidally too. Hence, equilibrium is possible

if the restraining forces EI (d)'l'w/dxh) per unit length supplied by the
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stiffeners slso vary sinusoidally in both directions. This is indeed
the case if wy varies sinusoidally. Hence, it may obvicusly be assumed

that : "
wy = Wy sin Z sin I = ¥y sin Ax (193)
where
A =x/a (194)

In a similar way, as was done in reference 13 (fig. 20) for deter-
mining the interaction between column and plete buckling, the buckling
deflection of the panel (fig. 22(a)) could now be split into two cases,
and the buckling stress opor expressed in terms of the individusl

buckling stresses for these cases. In the present case a slightly
different spproach 1s used by first splitting off the buckllng stress 9
of the unstiffened sheet, caused by its buckling into the shape Wy from

equation (193) and denoted as case 0, as indicated by the first method
under item (5). From page 329 of reference 26,

“N _ (& nb)2 2N _ (B, 1\° s
o omx 2N _ (o, P By (5, 22 (195)
O 70 p2 (nb &/ n?p2t <n2 ﬁ) b2t
where _ .
B = B./b (196) ‘

end N is the flexural rigidity of the sheet. The resulting buckling
deflection of the reduced structure with buckling stress o, = 05 ~ 0p;

where consequently the partial buckling stress oy caused by the rigidity
of the sheet against bending into the shape W 18 neglected, 1is then
split into two individual cases. Case 1 is the deflection Wy shown
separately in figure 22(c). Case 2 is the extra deflection wy, shown

separately in figure 22(4), which is caused 5y the deflecting forces acting
on the sheet and created by the partial buckling stresses o, = O, - 0

that cannot be taken by the unstlffened sheet. These deflecting forces
are consequently resisted by the stiffeners, which cause the bending of
the sheet into shape wo 1ike a laterally loaded continuous plate on : ,
several supports. -
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Hence, the actual buckling stress of the panel is
Oop = Op + Op (197)

where o, has to be expressed in the buckling stresses o7 eand oy for
the individusl cases 1 and-2, respectively.

Since the flexural rigldity of the sheet has to be neglected here,
in case 1 the buckling stress o3 1s due to the flexural rigidity of the

stiffeners alone. The critical thrust of the single stiffeners, with
effective moment of inertia I, is

Py = rc2EI_/a.2 = A2ET (198)

Hence, the restraining force R; acting on an element of length dx of
& stiffener if bent into a half sine wave i1s equal to the deflecting

force Dy = -Pq (Bawl/axz) dx or, from equation (193),

Ry = Dy = NPywy ax (199)
At inciéient buckling of the complete panel the compression Agi0.,. in
the stiffener itself, with cross section Agq, causes a deflecting force

s0 that the restraining force exerted by a stiffener on the sheet is only

2
Rl' = Rl - DSt = A\ (Pl - AStO'cr)W'l dx (201)

Therefore, by comparing equations (199) and (201), the restraining force
exerted by a stiffener on the sheet 1s equal to that exerted by a stiffener
with a zero cross section and a criticel thrust

Py' = Py - AggOop = NEIL - Age0oy (202)

The buckling stress for buckling in a shape like that in figure 22(d)
may be written in general as (ref. 25)
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2 2
gp = kp iE% = (;% + D+ Qﬁz) fgf (203)

vhere the computation for p and q is given in the appendix. However,
since only the reduced case ls considered, where the part fy) from equa-

tion (195) for buckling in a shape like w1 must be ignored, the critical
stress for the present case 2 is

1 t 2
g’ = dp = 0y = kp :—22%=p-;2§+<q_--j)ﬁ %'EZN (20k4)

In order to express the reduced critical stress o, of the combined
structure in terms of P' and o,' from equations (202) and (20k4), the

work done by the deflecting and restraining forces will be compsred. The
deflections w; and wp 1n figure 22 both vary sinusoidelly in the

X-direction (fig. 22(b)) so that, similar to equation (193),

Wo = Yo sin Ax ' (205)

where Y, 18 a function of y alone. Hence, at the reduced buckling

stress the deflecting force in the Z-direction (fig. 22(a)) exerted on
a sheet element + dx dy as a consequence of the deflection w = AT

is -tcr(azw/éxz) dx dy or, from equations (193) and (205),

Since from figure 22(a) the deflection w, does not involve any

deflection of the stiffeners, it is evident that the work done by the
deflecting forces for the deflection Wo is taken entirely by bending

of the sheet in the shape wy. Furthermore, since the reduced case 1s

considered, where the flexural rigidity of the sheet is lgnored for the
shape wq, the work done by the deflecting forces for the deflectlon wy

is teken by bending of the stiffeners alone.

The deflection Wy will be considered first. Denoting the deflec-
tions of the stiffeners as

Wgg = Wgrm 5in Ax (207)
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where wgy = w1, from equations (201) and (202) the restraining force
exerted by a stiffener per length d4dx is

Rl' = 7\2P1'W'St ax (208)

From the foregoing discussion the work done by the deflecting forces D
from equation (206) for the deflection w; has to be equal to the total

negative work done by the resitraining forces Rl' from equation (208)
furnished by the stiffeners. Hence,

%ﬂmlu@=%ﬂRl'wlaw

or, using equations (206) and (208) and dropping the terms R%/é,

tq.f[wfdxdy+torﬂwlw2c1xay=1=l*fz w2 dx (209)

where the double integrals have to be extended over the entire sheet with
dimensions & +times nb and the sumation sign refers to the (n - 1)
stiffeners. Equation (209) may be written in the form

nbtoy (w1 + Pipp) = Pp ¥y (210)
where wy, and wo, ere indicated in figure 22(a) and where

wim h/]hwlwz dx dy

? = ngLZ7“ W12 ax dy (211)

end, since Wgy = Wy (fig. 22(a)), using equation (193) gives
i=n-1

.. 2 1
nb }; sin“—= ib
nbu/\ZEIWStz dx anE:wst2 =P
1[{: =

_ i=1 . (212)

\Z?fwl dx dy .\/ﬂ w1~ dy b/\ sin2 X v dy
0 nb

0
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Hence equation (210) transforms to
(o‘r - cl') Wim + POpwon = O (213)

where, from equation (202),

O'l' = -:l-j_‘t- =09 - K'-O'cr (21’4-)
Py _ 2N
=k Pl =t o XLEL . L ELxN o1
TR D TR T A TR (215)
K o= %_‘I (216)

Replacing oy' in equation (213) by the last term of equation (214), in

which again 0y, 1s expressed according to equation (197), equation (213)
becomes

[(1 + K)o, - (cl - noo):, Wip + POpWoy = O (217)

In order to obtain a second relation between Wim and Won the work
done for the deflection wy, 1is considered. In case 2 buckling occurs

at the stress o' from equation (204), so that the restraining force

R, acting on an element t dx dy is equal to the deflecting

force D, = -tcz'(aawe/éxz) dx dy = Rgtoa‘wz dx dy. This restraining
force Ry, depends on the deflection w, alone and not on the compressive

stress so that, with the assumption that in the combined case the deflec-
tion Wo has the same shape as in case 2, also in the combined case the

restraining force is

Ry = Notap'wy ax dy (218)
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Equating the work done for the deflection w, by the deflecting forces D
2

from equation (206) to the negative work done by the restraining forces R,
from equation (218) gives

%kz7hnw2 dax dy =%‘/m Rowp dx dy

Using equations (206) and (218) and dropping the terms 7\2/ 2, this
becomes

tcrkz7ﬁwiw2 ax dy + tcrkz7nw2? ax dy = t“a'\[7hwéa ax dy  (219)

or

YOy + (Ur - 02‘)w2m =0 (220)

_ 2m
7—wlm >
Tes

The buckling condition 1s obtained from the two homogeneous equa-
tions (217) and (220) by equating the denominstor determinent to zero,

which yields a,, so that from equation (197)

where

(221)

Oop = Tg + Op
t t 1/2
0, - kon +(1+k)o 1!-(1-7CP+K)(0' - KQ, )cr
I B 2' L ), 1 ~ %) 02
o 2(1-y9+k) I:Ul—rco'0+(l+ K.)0'2]2

(222)
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or
_ 72N
Ocr = Kor ;E; (223)
where
1/2
- 1+ (1 + k) _ \ _ M1 - 9 + k)e
Yor TR0 T 1 - 99 8 (%2 - )| : [1 + (1 + K)]E}
(22k4)
0 =k [y - rig) (225)
and from equations (195), (20k4), (215), and (216)
N
2
_ (B .1
ol
_ 1 EI
k‘l = -B—éﬁ
» (226)
t 2 lip2
=p~—=+ - =B
e 2 fo- 3
K = f’S_t
w J

The values of p, ¢q, and ¢ for the cases of 1, 2, 3, and an infinite
nurber of stiffeners are determined in the eppendix and are assembled
in teble 2. If k, =0 and Kk = 0 so that no stiffeners are present,

equation (224%) reduces to k¢p = kg, 88 it should be. If ky' and

thus @ are infinite, so that no interaction occurs, equation (224)
becomes

Koy = - (227)
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in accordance with equation (1) of reference 47. Equation (227) mey

be used if B > 8. The largest interaction occurs for smell values of B.
In table 3 the results from equation (224) for B = 1 are compared with
those scaled from the graphs of reference 47. The values from refer-

ence 47 for kgp > 4 refer to the extension of the EI/(bN) curves.

The only importent discrepancies occur for n = 3, EI/(bN) = 0, and

k = 0, where the value from reference 47 is placed within parentheses,
since here indeed from equations (224) and (226) kep = ko = 100/81 = 1.235

so that the graph seems to be inaccurate at that point.
The interaction is the smaller the larger the value of Q is from
equation (225). In a similar way as was done with equation (69) of refer-

ence 13, for not-too-small values of Q equation (22k) may be simplified
by observing that the term in the large parentheses mey be written as

1-(l-e)l/2=1-(1-%e-%62)=%e<l+%e) (228)

since in that case € 1is small with respect to unity so that equa~
tion (224) transforms to

_ Q (1 - 99 + k)0
kcr'ko+1+9(1+K)1+[l+;(l+n)]2(kl'"ko) (229)

For still larger values of Q, the term 1 in the denominstor of the
frection within the large brackets may be neglected, so that equation (229)
becomes

(1 + k)2 |1+ Q(1+x)

Equations (229) and (230) are sufficiently accurate if g is larger
than 1 and 4, respectively. .

kcr=k0+[n+l_7q)+{l 1 o (230)

Values of k.. may be calculated directly from equations (22k),
(229), or (230). They have to be calculated for half wave lengths
a = Z/m, where 1 is the simply supported length of the panel in the
X-direction (fig. 1) and m 4is an integer (for only an infinite number
of stiffeners can &a be assumed to be equal to 1). The lowest value
of k.. so obtained has to be inserted into equation (223). The

effective moment of inertia I of the stiffeners to be used in
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equations (226) for calculating k, has to be determined as shown in

reference 20, where also a formula for the buckling stress coefficient
for forced crippling is derived from equation (22k).

This example shows that the method is applicable and gives accurate
results for very intricate problems as is shown also by its aepplication
in references 13 and 17. The present problem was also worked out for
stresses Uy acting simultaneously in a direction perpendicular to the

stringers as may be caused by thermal stresses, but it was thought that
omission of the stresses oy glves a clearer picture of the method.

It should be noted that in reference 1%, where the deflecting and
restraining forces acting upon en arbitrary small element were chosen
as the external and internal actions, these forces were expressed in
terms of the meximum deflections w, wy, and vy to which they were
proportional. In the present case, and also in reference 17, where the
work done by the deflecting and restraining forces wes considered, the
forces acting upon all elements must be teken into account. These forces
cannot be expressed in terms of the meximum deflections, since for dif-
ferent elements different proportionelity factors apply. Therefore they
wvere expressed in terms of the local deflections w, LATS and wo oOf

the individual elements, which expression in all cases considered was
facilitated by the sinusoidal varlation of the deflections in the X-
direction by which the deflecting forces ~to, a2w/ax2 are proportional
to w.

Since references 13 and 17, where the method was applied to several
other cases with different boundary conditions of the component modes,
are directly availsble, it is thought umnecessary to give other exsmples.
The reader therefore is requested to consider references 135 and 17 as
part of this section.

Cornell University,
Tthaca, N. Y., June 28, 1956. ' -
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APPENDIX
COMPUTATION OF p, q, AND 79

Computation of p and q in Equation (203)

For n = 2.- For plates with one stiffener (fig. 23(a)) in case 2
(fig. 222d55 each plate of width b can be considered as simply supported
at one unloaded side and clamped at the other one. From reference 48
for the clamped simply supported case p = 2.27 and q = 2.45.

For n = 3.- For plates with two stiffeners (fig. 23(b)) plate AB
is simply supported et edge A while et B 1t is subjected to a moment
that varies sinusoidally in the X-direction. Plate BC is subjected to
equal and opposite sinusoidal moments at edges B and C. The buckling
coefficlent k, can be determined by requiring that the spring constant

against rotation of plate AB along B is equal and opposite to that of BC
along B. Spring constents for these cases or rather the specific angle
rotations were derived in reference 49, where they are given by equa-
tions (48), (52), (53), and (54). The same results were cbtained in
reference 50 and are presented in tables in reference 51, where the

stiffnesses SIT and STV are the quarter spring constants referring
to the present plaetes AB and BC in B. Hence, k, 1s determined by the

condition SIT = -sIV, 1t appears that the minimm value of k2 ocecurs

for B = a/b = 0.72 and is equal to 6.15. From equation (6.4.1) of
reference 25 this minimm is

Ckz)min =p+2\q (A1)

Inserting the value 6.15 into equation (Al) and k, = 6.935, obtained for
B = 1, into equation (203), one obtains p = 2.36 and q = 3.58.

For n = 4%.- In the case of n = L4, (£fig. 23(c)), from symmetry
plate BC can be considered as clamped at edge C_so that, with the nota-
tions of reference 51, the condition at B is siI = -8, ylelding a
ninimm value of k2 = 6.47 and, for B = 0.9, k2 = T7.00. From equa-

tions (Al) and (203) this results in values of p = 2.37 and q = L4.20.

For n = w.- For the case of n = «» all plates can be assumed to
be clamped at both edges (fig. 23(d)) so that, from reference 25, p = 2.5
and q = 5. Values of p and q &are assembled in teble 2.
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Computation of @

From equations (211), (193), and (205),

Vig j]wlwzdxdy Wig ledey

- = (A2)
W'2m W
[iwe Efey "
y - o ff 1e - Yen il (43)
1m lm
Tms = Jeis

From equation (193),

Y, = vy sin (A4)

while from equation (62%) of reference 25 for the plates considered, in
general,

Y, =C cosh a1y + Cp sinh ay + Cz cos oy + C) sin ayy (A5)

where

1/2
U 9Oy = |:i7\2 + 7\(1:0/1\1)1/2:1 (46)

while A is given by equation (194).

For n = 2.- Considering plate AB in figure 23(a), the conditions
of simple support at y = O require that Cq = 03 = 0 80 that from
equation (A5)

Y, = C, sin ayy + C) sin agy (AT)

At y =b, Y, =0 so that from equation (A7)
sinh cx.l'b
-C, sToob o (A8)

Cy
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From table 26 of reference 25 the buckling coefficlent k for plate AB
in figure 23(a) (one edge, simply supported; the other, fixed) is 5.42,
occurring for & half wave length a = b = 0.8b so that in equation (A6)

£6/N = kn/p° = 5.42¢2/p2

Hence, from equation (A6}, with A = n/0.8b, one obtalns a3 = 2.12x/b
and o, = 1.165n/b. Inserting this into equations (A7) and (48)

Y, = Cp|einh (2.12xy/b) + T90 sin (1.165:ry/b):|

Denoting the deflection at y = b/2 as Wops this becomes

Y, = ;% sinh (2.12xy/b) + 790 sin (1.165:cy/b)] (A9)

From equations (Ak) and (A9) one obtains
b
f Y,2 ay = 0.50wyp°
0

b
f Y2 dy = 0.471bw,, 2
0

b
JF Y1Is &y = 0.366bw1mW2m
0
Hence, from equations (A2) and (A3) @ = 0.732, ¥ = 0.778, and
7P = 0.57.
For n = =.- It is sufficiently accurate to calculete ¢ and o
for n =2 and n =« only and to derive from these values the wvalues

of @ and 7 for intermediste n values. For iInfinite values of n
(rig. 22(b))

Y, = wy, = Constant (410)
From symmetry (fig. 23(d)) equation (A5) transforms to

Y, = Cp cosh ayy + Cz cos agy (A11)
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At y =1b/2, Y, =0 so that from equation (All)

cosh@xib 2
Cs = ~Cy 53§z§§gjggl (a12)

From teble 26 of reference 25 the buckling coefficient k = 6.97 occurs
for B = a/b = 0.668, from which, in a way similar to that for n = &,
one obtains o

aq = 2.488xn /b
@, = 1.303%/b
and
Y, = ;??5[Eosh(2.h88uy/b) + 54.5 cos(1.3o5uy/b)] (A13)

Hence, from equations (Al0) and (Al3)

b/2
u/\ .2 day = 0.5bwy "
0

b/2
u/\ 1,2 dy = 0.2065bw, 7
0

b/2 b/2
k/; Y.Y, dy = wLmu[; Y, dy = 0.2Tbwy W,

so that from equations (A2) and (A3) ¢ = 0.5%, 7 = 1.31, and Y9 = 0.707.

For n = 3.- It is sufficilently accurate toc consider the angle
rotations at B and C (fig. 23(b)) to be zero so that the two outer
plates AB and CD for n = 3 are similar to the plates for n = 2
(fig. 23(a) and the center plate is similar to those for infinite values
of n (fig. 23(d)). Hence, as an average value

79 = = (0.57 + 0.70T + 0.57) = 0.616

W |-



NACA TN L4085 IP)

For n = 4.~ Assuming the angle rotastions at B, C, and D to be zerv
(fig. 23(c)), one obtains, for n = k,

7P = % (0.57 + 0.707) = 0.639

Values of ¥® are asssembled in table 2.
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TABLE 1.- COMPARISON OF RESULTS FRCM EQUATIONS (L46) AND (48)
m = (Zeq/r)/( c/rc)

1 c h
em fom | |em v =0 v = 4 x 1072 cm/kg|v = 30 x 1077 cm/kg

Eq. (46)|Eq. (48) | Eq. (46)|Eq. (48) | Bq. (46) | Eq. (48)
260|130 | 2{16] 1.11 1.09 1.45 1.37 1.84 1.80
390|130} 3|16| 1.27 1.24 1.70 1.63 2.47 2.42
520|130 | 4|16} 1.47 1.43 1.90 1.85 2.94 2.8
5201130 | 4i2k|{ 1.2k 1.2 1.51 1.46 2.39 2.33
7801130 6{16] 1.92 1.8 2.30 2.26 3.56 3.53
156 78f 2{16] 1.12 1.09 1.56 1.48 1.8 1.89
390 78| 5/16] 1.69 1.65 2.30 2.26 3.68 3,66
780} 78110{16} 2.9% 2.91 3.37 3.34 5.09 5.09

TABLE 2.- VALUES p AND q IN EQUATION (203)

AND 7@ FROM EQUATTIONS (211) AND (221)

n D q 79

2 2.27 2.45 0.570
3 2.36 3.58 616
L 2.37 4,20 .639
® 2.5 5 707




TABLE 3..- COMPARISON OF RESULTS FROM EQUATION (224) WITH THOSE FROM REFFRENCE 47

L v o = » o « = & 2
EI/(bN) . . .« - . 5
B v v o o 4w s 0
Eqp from

eq. (224) . . .|k.25
kcr from

ref. 47 « « « «|%.20

0.4

3-T3

3.75

k.22

k.25

1.235

(1.28)

k.25

L.25

2.78

2.79

1.13%

1.13

Iy 25

2.66

2.66

4,25

0.k

3.29

3.60

0.k

0.71

C.T1

28

Cgo NI VOVN
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Figure l.- Replacement of bending and shearing rigidity of sandwich
column by equivalent spring systems.

—
———— e
e

o\

T

Figure 2.- Long rectanguler sandwich plate compressed in X-direction with
various boundary c_gnditions at loaded and unloaded edges.
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h
Figure 3.- Longitudinal section of sandwich plate with buckling deflec-
tion in case 2 (shear deformation of case only).

£

(a) (b)
Figure L.~ Spring systems.
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(¢) Clamped simply supported case.

Figure 5.~ Sandwich columns.
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(p) Composite case.

Figure 6.- Clamped simply supported sandwich column.
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(2) Columns (b) Case 1. (c) case 2. (d) Case 3.

connected by
batten plates
with equal

spacings.

Figure T.- Colums with batten plates.



88

Figure 8.- Equivalent laterally
supporting spring system for
column with batten plates.

Al D

A
(a) Coupled by (b) Coupled by
diagonals. diagonals and
verticals.

Figure 9.~ Latticed colums.
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Figure 10.- Long sandwich plate compressed in X-direction and clamped
at unloaded edges.
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Figure 11.- Long sandwich plate with
isotropic faces and an orthotropic
core compressed in X-direction
wilth arbitrary boundery conditions
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Q| | @+ 2% ) dy
=

Figure 12.- Equivelent spring Figure 13.- Restraining forces exerted

systems.

Figure 1k4.- Cross section of
corrugated sandwich plate.

Rl s

Figure 16.- Buckling of long
simply supported flange under
linearly distributed stresses
that increase with y.

by X-strip.

f lem

Figure 15.- Deflections of Y-strips
for clamped plates.

q

Figure 17.- Buckling of long simply
supported flange under linearly
distributed stresses that decrease

with increasing y.
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(a) Total deflection.

(b) Deflection for case 1.
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(c¢) Deflection for case 2.

Figure 20.- Deflection of cross section of I-section.
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Figure 21.- Stringer panels supported by stiffeners of equal cross section
and located at equal distances.
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b 65—

7 l

y

(a) Longitudinal section (v) Cross section through center

through center of of buckle.
buckle. -

CASE (

T i

Wome

(e) Cross section with deflection in case 1.

(d) Cross section with deflection in case 2.

Filgure 22.- Buckling deflection of stringer panel.
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(d) n = oo,

Figure 23.- Sketches used in computation of p,

NACA - Langley Field, Va.

q, and 79.
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